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Department of Electrical Engineering and Research Laboratory of Electrouics

NG7-29902

-

{ Massachusetts Institute of Technology, Cambridge, Mass. 02139

I. INTRODUCTION

The importance of the differential equation
(or state variable) technique of representing
dynamic systems for optimal control problems
is well-known. In the communications area the
technique appears useful in two classes of
problems.

(i) In the first class, the optimum receiver
may be either a linear or nonlinear system. It
contains as a component a linear filter which
is a solution to the familiar Wiener-Hopf equa-
tion.

(ii) In the second class, the fundamental
problem may be one of signal design or mes-
sage shaping. The problem is formulated in
terms of some equivalent optimal control prob-
lem which may then be solved.

In this paper, we discuss briefly the first
class of problem. The discussion is tutorial in
nature. Typical problems in the second class
are discussed in refs. 1 and 2.

In section 2, we discuss the estimator
equations. In section 3, we study the applica-
tion to detection problems. In section 4, we
study nonlinear modulation problems.

II. ESTIMATOR EQUATIONS

The basic linear estimation problem is

r(u) = clu)alu) + n(u) T, SusT

where a(u) and n(u) are sample functions from
independent zero-mean, Gaussian random
processes with known statistical properties and
c(t) is a deterministic carrier. The desired
signal is denoted by d(t), The optimum esti-
mate is obtained by passing r(u), T; < u < T
through a continuous linear filter. We denote
the output of this linear device as .

We choose the linear processor so that
the mean-square error,

* This work was supported principally by the
National Aeronautics and Space Administration
(Grant NsG-334).

&2 e[(dn-am)?], )
is minimized.
If d(t) = a(t) (3)
then we are trying to estimate the message.
Three special cases arise:
(i) t > T,
(ii) t =T,
(i) t < T

prediction,
realizable filtering,
filtering with delay.

There are two alternative ways of solving
the problem. The first method characterizes
the processes in terms of their covariance func-
tions and the linear processor in terms of a
time-varying impulse response. We will label
this method the impulse response method.

2.1 Impulse Response Method

We write,
T¢
G(r)=f h(t,u) r(u)du. @)
T.

The process statistics are described by,

iD

Kqolt,u) 2 E [a(f) a(u)]

(5)
Kolt,u) & E[n(t) n(w]

and K (t,u) 2 E[r(n) r(u)]

c(t) Kg(t,ule(u) + K (1, u).

Then, the optimum linear filter must
satisfy the integral equation (e.g., ref, 3)

Ts

f holt,u)K (u,z)du = K4, (t,2) (6)
T.
! 1,25z2<T,
T,<t ST

The optimum filter is shown in Fig. 1.

The error using the optimum filter is
Ty
Eo01) = Ky(t, 1) —f holt, TV Ky, (1,71 dT. (7)
T
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There are a number of special cases that
arise frequently in practice. The pertinent
equations are summarized in Table 1,

A second approach might be termed the
differential equation (or state-variable) method.
We will confine our discussion to the realizable
filtering problem. The prediction problem is a
trivial modification (e.g., ref. 4). The filtering
with delay is quite involved (e.g., refs. 5 or 6).

2.2 State-Variable Method

Here we characterize the message and
noise processes in terms of the vector-
differential equation describing the linear sys-
tem which would generate them if it were
excited by "white" noise.

To characterize the message we write

x(1) = F(x(t) + G(Hhu(t) (8)
where 1(?) is the state vector (n x1).

A canonic message generator is shown
in Fig. 2. The double lines denote a vector
path. The matrices F(t) and G(t) describe the
system dynamics. The forcing function u(t) is
a white noise input used to generate a(t). The
actual message a(t) is some linear combination
of the state variables.

Efuthu(n)] = q8(t-1). 9

The observation (or modulation) equation
describes how x(t) is transmitted.

Table 1. Summary of Equations.

Case Assumptions Integral Equation Description
Ts
1 (a) d(t}=a(t) f ho(Hu)K (u,z)du = K4(t,2) Interior point
T estimator
. <t<L !
(b) T; =t= Ty T, Sz5Ty Fixed endpoint
T.StST,

t
2 d(t) = a(t)

'/; ho(?,u) K (u,z)du = K (t,2)

Realizable point

NO
Kpltyu) = — 8(t—u)

i estimator
N t
3 d{t) = a(t) —Egho(t,z) +fh°(t,u)Ko(u,z)du = Kg(t,2) Realizable point
) T estimator in
PeTy T,<z<t white noise

t
4 d(7) = a(r)

_/;ho(T,u)K,(u,z)du = Ko(T,2)

Interior point
< estimator
T,<z<t Variable endpoint

t

2 0
TI

d(T) = a(7)

No No
5 Kn(',u)=-2— S(t-u) | Shy(r,z:t) +fh°(r,u:t)Ko(u,z)du=Ku(t,z)

Interior point
estimator

White noise

Variable endpoint

T, <1<t
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r(u) = c(u) x(u) +w(u) T, <u<t (10

To make eqs. (10) and (1) agree, we
require
c{uya(u) = clu)x(u}. (11)

Frequently, a(u) is the first component of
the state vector.

Then
c(u) = [ctuyjoio-io]. (12)

The additive noise w(t) is assumed to be
a sample function from a "white" zero-mean
Gaussian process of spectral height N°/2
(double-sided). If there is a colored noise
component, it is included in an augmented state
vector.

The optimum estimate ﬁ(tf is described
in terms of a differential equation whose
forcing term is r(t). In the cases of interest,
d(t) can be expressed as a linear combination
of the state variables.

n
d(th = 2 d.(hx,(H2 D(x(H). (13)
izl

Since minimum mean-square estimation
commutes over linear transformations, we
estimate the state variables and use

n
= YamRmeomkmn. (19
izt - =

The differential equation describing the
optimum estimate of the state vector is:
(This result is due to Kalman and Bucy, ref. 4)

Rnr= Emxin +zm[r(n - c(hx(n] a5

We see that the equation has the same
structure as the message generation equation
with the following associations

z(1) ~_, G(1 (16)

rit) — e x(t) ~_ u(t) (17)

The optimum estimator is shown in Fig. 3.

The matrix z(t) is specified by the gain
equation,

. 2 T
z(t) = No_E_pmgm (18)

where Ep(t) is the error covariance matrix in

estimating the state variables. It satisfies the

equation,

o= FMEL (M +€,(nETN

- N£§p(t)c7(t)c(r)€p(n +qG(HG'(H.(19)
Splficibieltis GG

The last equation is a nonlinear equation
which is commonly referred to as the variance
equation.

For the case in which d{(t) = a(t), the
system in Fig. 3 is identical to the system in
Fig. 1 under the assumptions of case 3.

The obvious advantage of the state-variable
approach is that the required functions are
easily computable.

We now look at two classes of communi-
cations problems in which the linear filters
shown in Figs. 1 and 3 play a fundamental role,

III. DETECTION PROBLEM

We consider two common detection prob-
lems.

3.1 Known Signal in Colored Noise and White
Noise

In the binary hypothesis case,

0<t<T
(20)
0<t<T

H, tr(1) = s() +n (1) +w(t)

Hg: rit) = n(t) +wit)

The signal s(t) is a known deterministic
function. The noise n.(t) is a zero-mean
colored Gaussian noise with a square-integrable
covariance function K (t,u). The noise w(t) is a
zero-mean white Gaussian noise with a covari-

N
ance function —29 d (t—u).

As is well known, the optimum receiver
performs a likelihood ratio test.

Using the impulse response approach,

T
L(T) = NA/S(T)r(T)dT
%

T.T
- %.ffs(u)ho(u,z)r(z)dzdu
°°0"0

where h,(u,z) satisfies the equation for case 3
in Table 1 with the associations

Hl
2 y(21)
HO
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n(t) =, oft)

Kolt,u) ~\_, Ka (t,u).
This can be simplified by defining,

(22)

T
g(7) = N%,/S(U)[S(T_ u)- ho(u,r)]du. (23)
0

Then
T

L(T)=fg(T)r(‘r)dr (24)
0

and the receiver is the correlator shown in
Flg. 4,

We now demonstrate how one translates
this result into a structure containing the real-
izable linear filters of Figs. 1 and 3. The
technique used carries over to a large number
of interesting cases.

We start by writing,
T

. [ du)
L{T) _/;—dt dt (25)

where
t

L(t) = —Z—fs(r)r(r)dr
A

t,t
-—iffs(u)ho(u,z :t)r(z)dzdu (26)
N°00

and h,(u,z:t) is the optimum filter (case 5
in Table 1.

Differentiating eq. (26) with respect to t,
we have,

1
oLt | 2 2 f
= gt r(t)=Ss(t)| h (t,z:1)r(2)dz
at No No 0 °
R
—ifs(u)du {h (u t:t)r(t)
No orrr
0
"o, (
+f —‘lu—’z'—”r(z)dz}. 27
0 ot
One can show easily that,
aho(u,z:t)
—T = ~holu,t:tyho(t,z:t) (28)

(where h,{e,®:t)is given by case 5 in Table 1
and is symmetric in its first two arguments).
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Re-arranging eq. (27), we have,

gLt 2 '
T = —N—o{s(f) —'{;ho(t,z : f)s(z)dz}

t

{r(t)—fho(t,z:f)r(z)dz}. (29)

o]

The resulting receiver has the simple
form shown in Fig, 5. (Observe that this par-
ticular structure could also have been obtained
using a "whitening" argument, e.g., ref. 7.)

The performance follows easily,

2

T '
q2 - Nz_fdf{s(f) -fho(t,z)s(z)dZ} (30)
0°0 o]

A second case of interest arises when
the signal component is random.

3.2 Gaussian Signals in Gaussian Noise

In the simplest binary hypothesis case,

"

H @ r{t)

) Sﬂ'(” + wit)

T, St<T,

31)

Hy: rit) w(t) T,£t<T

Here sg (t) is a sample function from a
zéro-mean Gaussian random process.

The likelihood ratio test is:

\Vin o

L

7.7
[}
ffdrdu r{r)hy(r,u)r(u) < vy (32)
0%0 Ho

Proceeding as in section 3.1, we obtain

T H
2 |
L=f [Zr(t)/s\o(t)df—/s\o(t)}dt 2y (33)
0 Ho

where

t
8, ='/;ho(t,r:t)r(z)dz. (34)

(This result is due to Schweppe, ref. 8.)

The receiver structure is shown in Fig, 6.
Once again we can find all of the point esti-
mators using the state variable approach.

We now turn to another class of commu-
nications problems.

IV. ESTIMATION OF CONTINUOUS
WAVEFORMS: NONLINEAR MODULATIONS

The continuous estimation problem is:



~d

r(u)= sfu: G ]+ wiw —o < p<t (35

where 8(u) is a sample function from a Gaus-
sian random process. The transmitted signal
s [u : 9(u)] depends on 8(u) in a deterministic
nonlinear no-memory manner,

In order to be explicit we will confine
our comments to the angle modulation case.

Then,

s[u: 8(wn] = V2 sin[wou + 8(u)].  (36)
The function &(u) is related to the message
a(r) through some linear operation.

For example, in FM,

u
s[uza(m)] = ﬁsin[wcu +fo(r)dr], (37

-®
Then

s{u: B(uw] 2 ﬁsin[wcu + 9(u)]. (38)

If Q(u) is the state vector of 8{u) process,
then, in general,

O(u) = F () B(u) + G (walu).  (39)

The actual phase 8(u) is the first component
of this vector process.

Now let x (1) be the state vector of the
message process.

Xt = Fo(hix (1) + G (thult).  (40)

Then, the total state vector of concern is
x(1) = |--eee- (41)

Then one can show that an approximation
to the optimum demodulator is the phase-lock
loop shown in Fig. 7. The loop filter is simply
precisely the same as the loop filter in Fig. 3.

There are several obvious advantages to
the state-variable formulation.

(i) The actual nonlinear demodulator is
constrained to be in the form of a closed loop
system. We are trying to design the optimum
loop filter. This is what state-variable approach
gives automatically.

(ii) There are two quantities that we are
trying to estimate simultaneously. The first is

the phase angle., This estimate is needed to
keep the loop operating in its linear region as
long as possible. The second desired quantity
is the message. Since it is a linear combina-
tion of the state variables and we automatically
estimate all of the state variables, the message
estimate comes out as a by-product of the loop
filter design.

Similar arguments can be applied to other
nonlinear modulation schemes.

V. SUMMARY

In this paper we have outlined the funda-
mental role of the optimum linear filter in
several interesting communication problems.
Since state-variable techniques frequently pro-
vide the most efficient method for finding the
optimum linear filter, their importance in the
above problems is obvious.

QOur discussion has been very brief, A
detailed development of the ideas is contained
in ref. 9.
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A THEORY OF CONTINUOUS NONLINEAR RECURSIVE-FILTERING

WITH APPLICATION TO OPTIMUM ANALOG DEMODULATION*

Donald L. Snyder

Research Laboratory of Electronics

 Massachusetts Institute of Technology

Cambridge, Massachusetts

ABSTRACT

A new approach is presented for the
continuous nonlinear filtering or esti-
mation problem. The approach is based
on the use of Markov processes and state-
variable concepts. Equations are derived
for approximate minimum-mean-square-error
estimates of a Markovian state vector
observed in a signal in which it is im-
bedded nonlinearly. A general model for
analog communication via randomly time-
varying channels is defined and related
to the state vector estimation problem.
The model includes as special cases such
linear and nonlinear modulation schemes
as AM, PM, FM, and PM_/PM; and such con-
tinuous channels as Rayleigh and Rician
channels, fixed channels with memory and
diversity channels. The approach leads
automatically to physically realizable
demodulators whose outputs are approxi-
mate MMSE estimates of the message and,
if desired, the channel disturbances.
Special consideration is given to PM and
FM.

NOTATION
v(t) Lower-case, underscored
letters denote column vectors
vi(t) The ith component of v(t)
d .th
EE!(t) A vector whose i~ component
is 5% vi(t)
M(t) Capital, underscored letters

denote matrices

*This work was supported principally by
the National Aeronautics and Space
Administration (Grant NSG-334).

N67-29903

Transpose of MZt) :
Inverse of M(t)

M'(t)
()
flev(e)] A column vector whose com-
ponents are nonlinear, no-
memory, time-varying trans-
formations of the vector v(t)

The Jacobian matrix associated
with f[t:v(t)], the (i-row,
j~column) element of the
matrix is S;; fj[t:z(t)]

Circumflex denotes the exact
minimum-mean-square-error
estimate

vk (t) Asterisk denotes the approxi-
mate minimum-mean-square esti-

mate.

¢ Denotes the collection of
0’ waveforms fg(T):tog T <t}

INTRODUCTION

An approach is presented in this
paper for continuously estimating a
Markovian state vector based on a noisy
observed signal in which it is imbedded
nonlinearly. The approach can be applied
in many diverse disciplines where the non-
linear filtering problem arises, so to
present it in a general context, we shall
first define an "Estimation Model" and
associate with it the formal mathematical
development of the theory. Applications
are then made to analog communication
theory. For this purpose, a broad ''Com-
munication Model' is defined for repre-
senting analog communication via randomly

time-varying channels. It is a special
case of the estimation model and can
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represent such linear-and nonlinear-
modulation schemes as: AM, PM, FM, pre-
emphasized FM, and PM,/PM; and such
continuous channels as: additive noise
channels, Rayleigh and Rician channels,
fixed channels with memory, and multi-
link channels. Special consideration is
given to angle-modulation schemes for
which quasi-optimum demodulators are
presented.

Discrete counterparts to the esti-
mation model, or to speciallc%ses of it,
havi Been studied Ey Wonham™>“, Weaver3,
Cox*s2, and Mowery®. Special cases of
the continuous model have also been
studied. Kalman and Bucy6 examined the
estimation of linearly tr%Psformed vector
Gaussian processes. Bucy® examined the
estimation of nonlinearly transformed
one-dimensional Markov processes. Several
related, not widely known studies have
been made in the U.S.S.R.g' 7 These,
again, are generally for the case of non-
linearly transformed one-dimensional
Markov processes. Applications to com-
munication theory are given by Weaver
and in the studies of the U.S.S.R. We
shall study the estimation of non-
linearly transformed multidimensional
Markov processes by a technique employing
linearization and a conditional-mean
argument.

Lehan and Parksls, Youla19 Van
Trees20- , and Thomas and Wong~~, among
others, have used an alternative approach
to study communication models that are
equivalent to special cases or our model.
Their approach, called the MAP approach,
is based on maximizing the suitably
defined a posteriori probability density
of a desired waveform. We shall indi-
cate the relationship between the
demodulators so obtained and ours. Re-
call that the MAP approach leads to an
integral equation for the estimate and
that the equation corresponds to a
physicallg unrealizable demodulator.

Van Trees?2 suggests making an approxi-
mation to the unrealizable demodulator
for the purpose of implementation. It
consists of a cascade of a nonlinear
physically realizable demodulator and a
linear physically unrealizable filter.

On the other hand, the recursive-filter-
ing approach leads automatically to a
physically realizable demodulator. 1t is
equivalent to the nonlinear physically

7/2

realizable portion of the cascade approxi-
mation to the MAP demodulator.

THE ESTIMATION MODEL

The Estimation Model is shown in
Fig. 1.

Let x(t) be a continuous m-dimen-
sional vector Markov process described by
the Ito stochastic differential equation:{

dx(h= f[tixtt)]dt +dx(h (1)

where f{t:x(t)] is an m-dimentional
vector whose components are memoryless,
nonlinear transformations of x(t) and
X(t) is an m-dimensional vector whose
components are Wiener processes. Let
the covariance matrix associated with

x(t) be:
Elxx' W] = x(hmin(t,w)  (2)

where X(t) is a symmetric, non-negative
definite, m X m matrix. The elements of
X(t), denoted by Xij(t)’ may be time-
varying.

Observe that more than one vector
process can be represented by (1) simply
by adjoining the individual vectors to
form x(t). Observe also that x(t) can
have deterministic components (e.g., con-
stant and time-varying parameters and
signals), in which case the corresponding
elements of X(t) are zero.

9 t is known (e.g., see Bharucha-
Reid that the a priori probability
density, p(x;t), associated with the
Markov process, x(t), defined by (1)
satisfies the Fokker-Planck equation

T These equations were first given a
rigorous interpretation by Ito?4. A more
recent discussion of his formulation is
given inzthe engineering literature by
Wonham™* Alternative interpretations
based on new definitions for stochastic
inteérals have been suggested by Straton-
vich?? and Wong and zakai30. we shall
sometimes formally divide (1) by dt
obtaining a white Gaussian process from
the Wiener process. The interpretation
will always be as (1).



m
9 oixit)= -2 4 -[fitzxp(x; 1)

—elxih  (3)

with the initial condition p(x;t )

(X:t)

In the sequel we shall be interested
in estimating scalar Gaussian processes
with rational spectra. These processes
can be represented in the form of (1) by
letting £{t:x(t)] = F x(t), where F is a
time-invariant, m X m matrix. X(t) =
must also be time invariant. By care-
fully choosing such a state representa-
tion, one component of x(t) can be made
to correspond directly to the scalar
process. Moreover, when several scalar
processes are represented by adjoining
their individual state vectors, each will
correspond directly to one of the com-
ponents of x(t). A particularly con-
venient state representation for scalar
Gaussian processes is presented in the
Appendix. We shall use this representa-
tion exclusively in the applications to
follow.

We shall now define the noisy ob-
served process. Let y(t) be a con-
tinuous, p-dimensionéT vector random
process described by the Ito equation:

dy(t) = g[t:x(h]dt + dq(t),  (4)

where g[t:x(t)] is a p-dimentional vector
whose components are memoryless, non-

linear transformations of x(t) and n(t) is

a p-dimensional vector whose components
are Wiener processes. Let the covariance
matrix associated with n(t) be given by

Elnptn'w)] =

where N(t) is a symmetric, positive-
definite, p X p matrix. It is assumed
that N"*(t) exists; this implies that
noise-free observations cannot be made.
The elements of N(t), denoted by N (t),
may be time-varying.

N(t)min(t,u), (5)

Simply for the convenience of nota-

tion,_ we assume that x(t) and n(t) are un-

correlated

E[xthn'w] - o.

Some of the statistics of dy =
y(t+dt) - y(t) will be required later.
We shall cite them here for convenience.
Observe that to terms of order dt

E[dydy'] = N(hdt, (6)
as can be demonstrated by using (4) and
(5). Furthermore, all higher order
moments of dy dy' are of order greater
than dt. This implies that dy qz'/dt
is essentially deterministic and equal
to N(t) for dt vanishingly small. Thus,
to terms of order dt

= E[dydy'] = N(t)dt (dt infinitesimal) (7)

A more rigorous discussion justifying (7)
is given by Kushner3l. Eqs. (1) and (&)
jointly define a continuous, (mt+p)-
dimens ional, vector Markov process whose
components are the combined components
of x(t) and y(t). Formally dividing the
equations by dt results in the more
familiar looking expressions:

Lxn = flxm] +&m (8)
and
Sym=zrm=gltxm]+nm, (9

where E(t) = dy(t)/dt and n(t)=

dn(t)/dt are m-and p-dimensional vectors
whose components are white Gaussian
processes. The associated convariance
matrices are X(t) 8(t-u) and N(t) 5(t-u),
respectively. -

We shall assume that the actually
observed process, r(t) = dy(t)/dt, is
available from an initial observation
time, t , until the present time, t.
The entire observed waveform,

{r(r):t_ < 7 < t}, will be denoted by
- OuT :17 .
Io ¢ Similarly, the entire waveform
o’

{Z(T):to < 7t < tl, will be denoted by
e e With the observation of r(t), the
o,
a priori probability demsity, p(x;t),
evolves to the a posteriori density,
p(x; tlr ) = p(x;t ¢ | ¢)» for which the

follow1ng equation has

been correctly
derived by Kushner26 .
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pUx t+atly, pian) =Pty )

é%{f(t x)pix; ﬂy, Q]

™3

m
+LZZ

tV13

3
;i 5 o p(xitly, ydt (10)

—

+pixstly, pgttn —Egtin]

N0 ey - Eg(tzxat],

where E indicates expectation with re-
spect to p(x;t]yt t). The left side
- = H

along with the fiPst two terms of the
right side of (10) are recognized as
the Fokker-Planck equation associated
with x(t), as given by (3). The last
term on the right represents the modifi-
cation to the Fokker-Planck equation
resulting from the observation of r(t).
When g[t:x(t)], and hence r(t), does not

‘ depend on x(t), then the last term is

| zero and the equation reduces the

} original Fokker-Planck equation as
expected.

DERIVATION OF THE ESTIMATION EQUATIONS

An equation for the exact minimum-
mean-square-error estimate of x(t),given

the accumulated observations, rt g» can
b

be derived by using (10) and the®fact
that the estimate, denoted by X(t), is
the conditional mean

o2} [}
A
t)= .o : .
‘ x(t) » ‘/:mlp(i,tu,o',)dxl...dxm Qa1
m-fold
I The minimum-mean-square-error esti-

mate of x(t) is a vector whose i*! com-
ponent is the minimum-mean-square error
estimate of xi(t).
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D'[g(t:R)] (x-

Multiplying both sides of (10) by x and
integrating results in

ix\_(f+d'r) -2(?) = d@('f) = Ef(t:x)dt +E[{1—2(f)}
-g' N (0 [dy - Eg(t:x)at], (12)
where E denotes expectation with respect
to p(z;t|zt t) and integration by parts
has been used.
We now assume that the following

Taylor expansions for f[t:x(t)] and
glt: x(t)] exist:

Htox) = f(t: x)+Z(x -4 )—f(t x)

izl A
X (13)
m m az
#3202 =Rt =) 550 A
i=l j=I 4
gltix) = gﬁ:g)+-z: l)-——g(1 x)
i=1 A
LS
m m 2 (14)
+%ZZ(X,-X =) —— g(t x|+
i= j=1 %7 ax 19X, 2

The second term is each expansion may be
written as D' ﬁ(tzg)](gjg) and
R), respectively. D{f(t:x)]
is the Jacobian matrix associated with
the vector, f[t: x(t%], its (i-row, j-
column)-element is I f [t:x(t)].
i

The equation for the exact estimate
can be obtained by substituting these
expansions in (12). The resulting
expression can neither be solved nor
readily implemented because of the
general existence of an infinite number
of terms. It is natural, therefore, to
consider the truncation of the expan-
sions on the assumption that the com-

A A
ponents of the error vector,x(t)-X(t),
are small. This assumption can be
expected to be valid when the disturbance
processes introduce only small perturba-
tions in the observed processes.



Let x*(t) be the approximate
minimum-mean-square-error estimate of
x(t) which is specified by the sub-
stitution of the expansions for f{t:x(t)]
and g[t:x(t)] in (12) and the retention
of the most significant terms. Whenever
flt:x(t)] and g[t:x(t)] are linear
functions of x(t), no approximation is
involved and the exact and approximate
estimates are identical. The equation
that we obtain for x*(t) is

(h]at + ¥ (mp[grt: &N

dxq1) = [
aft: (0] at} (15)

{ay-

or, formally dividing by dt
L= t[rxin] + vino[a: ] Nt
{rn-g[r: 0]}, (16)

where V*(t) is a symmetric, non-negative
definite, m X m error-covariance matrix
defined by V*(t)n[xﬁw(a][x -x*(t)]'.We shall
refer to (16) as the ""Processor Equation.'
All quantities in it are known except for
the error-covariance matrix, V*(t), for
which an equation will be derived. The
associated initial condition, x*(t ), is
determined from

f fxp(x to|x,°’,°)dxl...dxm
=f f xpix;t)dx, ...dx, ¢9))
-0 -

where p(§;to) is the a priori probability
density of x at time t_. That is x*(t )

is the best estimate of x(t ) without any
observations.

We note that the terms of (14) hav-
ing the most significant effect on the
processor equation are the first two of
each expansion. Consequently, the approxt
mation is, in effect, a linearization
about the current estimate. This implies
that within the approxlmatlon,p(x t]y )

=t ,t
is normal with mean x*(t). o’

We now turn to the derivation of an
equation for V*(t). An equation for
vﬁl(t), the (k,f)-element of V*(t), is
first obtained by the following procedure:

(1) multiply the equation for
(x tly, ,t) by [x,- k(t)][x x (t)1;

(ii) integrate to obtain an equation for
the (k,Z)-element of the exact error-
covariance matrix; (iii) use the expan-
sions for flt:x(t)] and glt:x(t)] and
keep only the most significant terms.

Proceeding with steps i and ii, we
use

[x K= Qk('r)] [x

[xp= Ryt +an] +aR, (1 dRy (1) =[x, =Ry (1 +a1)]

= Ran] = [x =Rt +an]

~dRy (1) = [xg= Ryt +dn] dR (1) (18)

to obtain

v (1) + dR (N aRy (1) = E{ttr:x) [x-Rin]
#[x-R0] £ 0} g dt + Xgghdt + E{x, - R}
Lxg-RyHatt:0 - Eatt: 0]

N [dy - Egltinat], (19)

where integration by parts has been used
to obtain the first three terms on the
right. We now substitute the expansions
for f{t:x(t)] and glt:x(t)] in (19) and
keep only the most significant terms. We
also use the fact that within the approxi-
mation, p(x t‘yt ,t) is normal with mean

x%(t); consequengly, odd moments of the
components of the error vector,

x-x*(t), are zero and even moments factor
into products of second moments. The
equation we obtain for v*kl(t) is

dvi, (1) + dx¥ (1) d ¥, (1)

= {0 e8] v + v p[E(: )] + X (h}gat
a?
ot g[t:x (t)]:|

N0 {ay - g[t:x* (] at}. (20)
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The second term on the left,
dxﬁdx* = [ (dx*)(dx*)' ] , remains to be
examified. Using (15) and keeping terms
to the order of dt, we have

(dx*) (¥ )" = V¥ (0D [gtt:d)] N (h dydy’
N [atrxn | vEn. (21)
Since we are retaining only those terms
of order and dt and dt is infinitesimal,
dydy' may be replaced by N(t)dt as indi-
cated by (7). Hence, to terms of order
dt
-1
(dx*)(dx™) = V¥ o[gtt: )] N ()

0[N ]V (nat. (22)

Substituting this result in (20), we have
*

dv:’,m o]y i+ vanp[tid)] + xon

+V (1)0[9(1 )N

[Z 2 Vi (Vg (0

(t)D[g(t )]V }qat
g't:% m]] '

(23)

izl j=1 ax ,a i
- {ay - g[t:xxn]at}

= {o' [t ] v+ vEmo ] + in
o[ofgr: # N {rin - gt} ¥ (0] gat.
(24)

That (23) and (24) are equal may be
demonstrated by expanding the matrix
expressions. Formally dividing (24) by
dt results in the following equation
for v*(t):

d
=V (h:D

preAGREN ) G +v [ ]+ x()

+_\Z‘(t)[_) [_D[S(“l*)] _Iy_— (1)
{rin = guraan}vrn . (25)
We shall refer to (25) as the ''Variance

Equation.'" The associated initial condi-
tion is determined from

fe) [00]
o B R ) | PO
- -

cp(xity) dx, ... dxp. (26)
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The processor equation (16) and the
variance equation (25) jointly define the
quasi-optimum estimate, x*(t). In
general, the equations are coupled and
both depend on the observation vector,
r(t). When flt:x(t)] and g[t:x(t)] are
linear transformations of x(t), the
equations reduce to those of Kalman and
Bucy’ in which case the equations are un-
coupled and V*(t) does not depend on r(t).
We shall see that this also occurs in
angle-modulation schemes in which the
transmitted-signal spectrum is essentially
disjoint from the message spectrum. This
is of practical significance, since it
implies that V*(t), and hence the struc-
ture of the quasi-optimum demodulator,
can be determined before any observations.

THE COMMUNICATION MODEL

The Communication Model is shown in
Fig. 2.

Let a(t) be an n-dimensional state
vector representing the output of an
analog message source. a(t) is a con-
tinuous vector Markov process defined
by the Ito equation:

da(t) = f[t:a(h]dt + da(t), (27)
where a(t) is an n-dimensional vector
whose components are Wiener processes.
Let the covariance matrix associated

with a(t) be given by

E[g(t)g%u)]= A({t)min(t,u), (28)
where A(t) is non-negative definite,

n X n matrix which may be time-varying.
More than one message can be represented
simply by adjoining their individual

state vectors in the formation of a(t).

0f course, Gaussian messages with rational
spectra are a special case of (27) with

£ (e:a(e)] = F a(t).

The message vector, a(t), is trans-
formed by a modulator into c¢ signals
appropriate for transmission over the
channel. The modulator consists of linear
filtering followed by a memoryless, non-
linear modulator. The linear filtering
may be time-varying and is described by
the state equation



du(t = F(hu(hdt + Lgitia(tydt,
(29)

where u(t) is an i-dimensional vector,
and Eu(t) and L_(t) are matrices of

dimensional £ X £ and £ X n, respectively.

The ¢ signals at the modulator output are
represented by s{t:u(t)].

A second linear-filtering operation
follows the modulator. It is described
by the state equation

dz(t) = F()z(t)dt + L (t)s[t:u(h]dt,
(30)

where z(t) is a g-dimensional vector,

and F_(t) and L_(t) are matrices of
dimensional q qu and q X c, respectively.
We shall allow this filtering to be
associated with either the modulator or
the channel, the choice depending upon
the particular application.

The modulator, including possible
linear filtering at its output, contains
as special cases: linear-modulation
schemes, such as AM, AM-DSB/SC, and
AM-SSB; nonlinear-modulation schemes,
such as PM, FM, and preemphasized FM;
diversity-modulation schemes, such as
frequency-diversity PM and FM; and multi-
level-modulation schemes, such as PMn/PM.

The channel inputs are transformed
into p signals that are represented by
the vector g[t:x(t)]. Each component
of glt:x(t)] is observed in additive
white Gaussian noise. The observed
process can be described by the Ito
equation

dy(t = g[t:x(n]at + dq(h, (31
where n(t) is a p-dimensional vector
whose components are Wiener processes.
Let the covariance matrix associated with
n(t) be given by

E[7(7'(w)] = N(hmin(t,u), (32)
where N(t) is a symmetric, positive-
definite, p X p matrix that may be time-
varying. We assume that N-l(t) exists.
The actually observed process is r(t)=
qZ(t)/dt. Note that we have defined Z(t)

for the communication model in exactly
the same way as y(t) for the estimation
model. -

Disturbance processes, such as
additive and multiplicative processes,
are introduced in the randomly time-
varying portion of the channel. These
processes can be Markovian in general
and are described by the Ito equation:

do(n = fp[t:bin]dt + aBin,  (33)
where b(t) and 8(t)are k-dimensional
vectors. The components of B(t) are Wiener
processes and the associated covariance
matrix is given by

E[BM B W] = 8B(hmin(t,u), (34)
where B(t) is a symmetric, non-negative
definite, k X k matrix that may be time-
varying. Of course, as a special case,
the disturbance processes can be Gaussian
processes with rational spectra.

The channel, including possible
linear filtering at its input, contains
as special cases: simple additive
channels; Gaussian multiplicative
channels, such as Rayleigh and Rician
channels; fixed channels with memory;
multilink channels; and other commonly
occurring channels. The Markovian
disturbance processes that we include in
the model cannot be treated with any
alternative approach.

The vector, x(t), of the communi-
cation model is obtained by adjoining
the individual state vectors a(t), u(t),
z(t), and b(t). Let - -

x(t)= L= ;j[t:yt)]:

- B fo[t:001]

(35)
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and
alt)
E;
X(t)= '6'
Bt
Then

dx(t) = ([t:x(n]dt + ag(n.  (36)
describes x(t) for the communication model
and is identical to (1) describing x(t)
for the estimation model. The order in
which a(t), u(t), z(t) and b(t) are placed
in forming x(t) is arbitrary.

With the definition of the communi-
cation model now completed, we turn our
attention to the consideration of appli-
cations. The procedure is (i) specify
the particular communication model for
the application; (ii) identify x(t),
fle:x(t)], X(t), r(t) = dy(t)/de,

gle: x(t)], and N(t); (iii) use the
Processor and Variance equations (16 and
25) to determine the structure of the
demodulator.

APPLICATIONS

1. Gaussian Message - No Modulation

Consider the communication model
shown in Fig. 3a. This is a simple
situation to which the Wiener approach
to the filtering problem is often applied.
It provides some insight into the results
that we shall obtain for angle modulation
and, at the same time, into the relation-
ship between the structure of Wiener and
Kalman-Bucy filters.

a(t) is a stationary Gaussian message
and n(t) is a white Gaussian process of
spectral height N watts/cps. a(t) and
n(t) are uncorrel3ted.

The equations describing the model

are (with the representation for a(t)
given in the Appendix):

d
Fr A = Fx(h) + & (37

7/2

and

é%Y(t)= r(t)= x () +n(t)  (38)

where x(t) is an m-dimensional vector
with x.(t) = a(t). F and E(t) are
defined in the Appendix.

We assume that E[£(t)E'(u))=
X&(t-u) is known. From (38) we have
gle:x(e)] = %, (t).

The processor and variance equations
(16 and 25) become

B ]
v, (h)
v, (t)
An .. A || '2 _A
aiRm = B+ | {rin -}
Vim(t)
(39)
and

4 V(1) = F(O V() + VI F'(t) + x(f)——l M(t)
dt — - = - - = No__
(40)

where M(t) is a symmetric m X m matrix
whose (i,j)-element is (t) v (t).
By comparing (37) and (39 we o lain
the optimum processor shown in Fig. 3b.
We observe that it depends only on the
first column of V(t).

V(t) can be determined numerically
or can be generated as the output of
the system specified by (40). If desired,
!(t) can be determined before any actual
observations. The components of V(t)
are of interest for two reasons: first,
they complete the structure of the
processor; second they describe the
performance of the processor. We shall
not give solutions to the variance
equation here. Rather, we shall be
interested only in obtaining the general
structure of the optimum processor.

A special case arises when t = -o
so that steady-state conditions




exist.** 1In this instance, the optimum
filter has the alternative form shown in
Fig. 4. The structure of the optimum
filter which would arise most naturally
through application of the Wiener approach
is, of course, the closed-loop version of
the filter of Fig. 4.

2. Gaussian Message - Phase Modulation

Consider the communication model
shown in Fig. 5 in which a stationary
Gaussian message, a(t), phase modulates
a sinusoidal carrier whose nominal
frequency is large compared with signifi-
cant frequencies of a(t). We shall assume
that the variance of a(t) is unity so that
8 can be interpreted as the modulation
index. The phase-modulated signal is
observed in additive white Gaussian noise
of spectral height N, watts/cps.

The equations describing the com-
munication model are (with the repre-
sentation for a(t) given in the Appendix)

x(t) = Fx(n+&m (41)

and
d .
STy = ri = Csin[wot + Bath] + n(n), (42)

where x(t) is an m-dimensional vector,
and F and E(t) are as defined in the
Appendix. Observe thatl<l(t) = a(t).

We assume that E[g(t)E'(u)] =
X6(t-u) is known. In this instance,
glt:x(t)] = Csin [ t + 8x,(t)], a
St+-2 o 1
scalar. Hence

BCcos [wof + ,Bxl(t)] .
(43)

ofgtt:x]-

Qoeee O O

**Sufficient conditions for the existence
of a unique steady-state_solution are
given by Kalman and Bucy7

After some manipulation, the processor
and variance equations (16 and 25) be-
come

vE(h
T
d Viz

S k(N = Fx¥(1 + ~,\'J—° © | Becos[wgt + Bxh)]

{rin - csinfwgt + Bx¥n]}

(44)
and
Ed?!*“’ S FVARD + VINF + X
—NI—OBZC {r(t)sin[w°t+,8x’:(t)]
+ Ccos[ZwOf + ZBxf(t)]} M(t)
(45)

where M(t) is a symmetric,m X m gatrix
whose (i,j)-element is vli(t) vlj(t),

We shall examine the variance
equation first. From (45), the (i,j)-
element of V*(t) satisfies

* *
-dg;\?clj(f)= - ivlj(t)—‘I,jv”(f)*-v?‘*"j(?)
+ v’;’n.i(f) + X5 _NI_OBZC\I",‘i(f) v"l‘j(f)

~{r(f)sin[wof +,Bx*;('r)] + Ccos[2w0? + ZB)(;k(f)]}.
(46)

v.f(t) can be realized as the output of
thi system diagrammed in Fig. 6. Let us
now conjecture that the components of
V*(t) are alowly varying. We shall find
that to a close approximation this is,

in fact, true. Then the double-frequency
terms associated with cos[2w t+28xf(t)]
will not propagate through the lowpags
filtering. Consequently,cos[2w0t+25x1(t)]
has negligible effect and can be dropped.

7/2



The input to th multiplier is then

r(t) sinfw t+B (t)]. It is through
this term hat the variance equation is
coupled to both r(t) and x*(t). This
coupling is a great disadvantage practi-
cally because V*(t) and, therefore, the
structure of the demodulator, cannot be
determined before making observations.
For this reason, it is worthwhile to
examine r(t) sinfw t+81*(t)] critically
so as to obtain an? possible simplifi-
cation. We shall find that a significant
simplification is possible.

Observe that that coupling term may
be rewritten

ritsinfwgt + B2%] = (1 sin[wgt + Bx¥(n]

+ Csin[wo'r + ,Bxl('r)] sin [wot + Bx”f(t)]
= n(tsin[wot + B (] +$Ceos B x (1) - ¥ (1]

~1ccos[2w t + Bx (h + Bx¥(n].
47)

Again, the double-frequency term can be
disregarded . The second term on the
right can be expanded:

$Ccos ,B[x’f(t)—x, (?)]
2
s3c—5cB%[xn - # (0] + ... (48)

Within the approximation for which the
demodulator is optimum, all terms of the
expansion except the first can be neg-
lected; the others lead to terms of

the order of the sixth moment of the
error at the output of the multiplier.
Thus, to a good approximation for small
error, we have

r(tsinfw,t + Bt (1]

-'éc{|+%n(t)sin[wof +BX’T“)]}'

where n(t) is a white process, by which
we mean that it has a flat spectrum at

least over the frequency range where it
has effect. In reality, n{(t) has a
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finite variance given by N W, where
w is the channel or receivef input
béndwidth. By lncrea51n§ the channel
signal-to-noise ratio, /2N W, it is
possible to make the probabiiigy of
excursions of 2n(t)/C outside a range
around its mean, zero, as small as
desired. Since the magnitude of sin(.)
is bounded by unity, this implies

%C{I +%n(f)sin[wot + Bx",‘(f)]} P _|2'C

almost always when the signal-to-noise
ratio is sufficiently large. We con-
clude that for large channel signal-
to-noise ratio

. *
r(f)sm[wot+ﬁxl(’l)] N%C. (49)
The approximations have effected an un-
coupling of the variance equation from

r(t) and x*(t), thereby making a practi-

cal simplification of importance. The
variance equation becomes:
2.2
* *
iV (Y= FV (1) +V (1)F + X __,B_C M(t)
dt - - 2N, —
(50)

This equation is nearly identical to the
variance equation associated with the
no-modulation case of Example l(see

Eq. 40). Only the noise level must be
modified. V*(t) can be determined
before making any observations, just as
in the no-modulation case.

In the steady-state, the Processor
equation (44) leads to the quasioptimum
PM demodulator of Fig. 7. 1t is seen
that the subtractive sinusoidal signal
results only in double-frequency terms
at the output of the multiplier. Since
these will not propagate through the
filter, the subtractive branch can be
discarded. The simplified demodulator
is a phase-locked loop.

3. Gaussian Message - Frequency Modula-
tion

Consider the communication model
shown in Fig. 8 in which a(t) now
frequency modulates a sinusoidal carrier.
We assume that a(t) has unit variance;




d. is then the standard deviation of the
mgdulation frequency. The spectral height
of n(t) is N, watts/cps.

If we let xo(t) = u(t), the integra-
ted message, then the equations describing
the communication model are (with the
representation for a(t) given in the
Appendix):

Lx(h = Ex(n+€m (51)
and
t
r(t) = Csin [mot + dffo('r)dr] + n(t)
fO
= Csin[wyt + dgx (] + (),
(52)
where
[‘xo(f)
(= WD) X
a(t)
Xm(t)
and - -
o 1+ oo | o |
o -y, t o0 X, &n
F=|lo -y, 0 1 s £ X, &

O -y, O 0...0 X, &)

L - e -

Note that u(t) = xo(t) and a(t) = xl(t).

We assume that E[E(t)E'(u)] =
X6(t-u) is known. In this instance,
glet:x(t)] = ¢C sin[wot+dfxo(t)]. Hence

_J
0
Q[g“:lﬂ Y dchos[wJ-+dfxo(ﬂ]-

©]

11

After some manipulation, the Variance
and Processor equations (16 and 25) be-

come ~—~ -
V:o )
*

v (1
d ot
FEmeEme | T Lagc

0 .

ng(t)J

+cos[wyt + dp (0] {rin - Csinfwyt +dgf (1]}
(54)

and

L = PV + ¥ (NF+ X
- NLodeC{r(t)sin[a)ot + dpek (1]
+Ceos[2wgt + 2dx X ]} mn  (55)

where M(t) is a symmetric (m+l) x (mtl)
matrix whose (i,j)-element is

v f(t) vo*(t). We observe that (55) is
equivalen& to (45), the variance equation
for the PM case. Therefore, the arguments
leading to the simplified variance
equation, (50), carry over and (55) be-
comes

2.2
¢ C

=%

V= BV () +VIF + X -2 Mt (56)

2N, —

Eq. 56 also arises in connection
with a linear filtering problem in which
a(t) is integrated before being observed
in additive white Gaussian noise.

o

t

In the steady state, the Processor
equation (54) leads to the quasi-optimum
FM demodulator of Fig. 9(the subtractive
sinusoidal term of (54) has been omitted,
since it has no effect). This demodulator
can be placed in the form of a phase-
locked loop. which is optimum for esti-
mating u(t), and a realizable post-loop
filter, whose output is a*(t). It is
this last structure that arises most
naturally with the MAP approach and is
probably more familiar. The demodulator
of Fig. 9 has the advantage of requiring
one less filter.
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CONCLUS ION

The usefulness of the state-variable
approach in treating problems of analog
communication theory has been illustrated
by considering angle-modulation schemes.
Such schemes have also been treated by
the MAP approach, so we note here the
relative advantages and disadvantages
associated with the two approaches. Some
advantages of the state-variable approach
are that (i) considerable insight into
the structure of the demodulator is pro-
vided; (ii) the differential equations
associated with the approach are more
amenable to numerical evaluation than
the integral equations of the MAP
approach; (iii) realizable demodulators
result directly; and (iv) a class of non-
Gaussian message and channel disturbances
can be treated. In the communication
theory context, it is not yet clear what
usefulness (iv) has; however, applica-
tions in control theory can be given.
These arise when we wish to estimate the
state variables of a nonlinear, dynamic
system based on noisy observations of the
state variables.

Some disadvantages are that (i) It
is necessary that random processes and
linear filtering be representable by
equations of state. Thus, Gaussian
processes with nonrational spectra can-
not be treated. A particular linear
operation which arises in array problems,
for example, and cannot be treated
directly is that of pure delay. (ii)
The unrealizable filtering problem can-
not be treated easily.

In addition to the applications to
analog communication theory presented
here, we have also considered the
following 7 problems:

1. FM signals transmitted over
several diversity channels;

2. FM signals transmitted via
Rayleigh fading channels;

3. FM signals transmitted via fixed

channels with memory; and

4. PM signals transmitted via a
random-phase channel (i.e., un-
stable local oscillator).
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The structure of the realizable
quasi-optimum demodulator for each of
these cases can be determined by a
straightforward application of the proces-
sor and variance equations given above
(16 and 25).

APPENDIX: STATE REPRESENTATION

FOR GAUSSIAN PROCESSES

Any stationary, scalar Gaussian
process, x(t), with a rational spec-
trum approaching zero for high frequencies
can be represented by the differential
equation

dm dm4

——-X(f)+\ll'——-_~'x(')+...+ x(t)
dfm Idfm [ wm
\ dm—i dm—z
= |dfm—| f(?)+)\2dtm—_2 +...+)\m€(f)
7N
where ¥ , ¥_and \,, ... , \_ are

s e
constan%s, and E(@) is a white GauSsian
process. As is well-known, x(t) can be
realized by the passage of £(t) through
the filter shown in Fig. 10a. Alterna-
tive realizations can be obtained by
representing x(t) by one of several
possible equations of state. A parti-
cular state representation that we shall
use, of which a detailed account is given
by Zadeh and Desoer 8,

Sox (0 = =¥, x, (1) + %00 + X &N
dd_txz“) = =, (1) + x (1) + X8
Tk (s =YX, () + X (1 + X ()
d

X = =YX () + X &),

a

(58)

where

x(t) = x (1),



Eq. (58) leads to the alternative 2.

realization shown in Fig. 10b. We shall
represent the equation in matrix nota-
tion as

é%i(” = Fx(h+ £(h, (59) 3.
where
-y, 1 0 O —Xu f(f;
-y¢, 0 1 O A, €
Fel~¥s © 0 L &=, €.
: .
“Ym O ... 0 A0

Observe that F contains all of the
denominator coefficients associated

with the rational polynomial realization 6.

and, correspondingly, £(t) contains all
of the numerator coefficients. Because
of this feature, the rational poly-
nomial representation can be obtained
by inspection from the state representa-
tion, and vice versa.
that the scalar process, x(t), corresponds
directly to one of the components of x(t).

A nonstationary scalar Gaussian
process can be represented by (58 or 59)
with time-varying coefficients,
¥, (L), » ¥,(€) and x, (t), s A_(t).
The filter of ?ig. 10b with varying ggins
can be used to realize the process.
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Fig. 3. (a) Stationary Gaussian message observed in an additive white noise channel.
(b) Optimum filter for estimating a stationary Gaussian message observed in
additive white noise: transient conditions.
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Fig. 4. Optimum filter for estimating a sta-
tionary Gaussian message observed
in additive white noise: steady-state
conditions,
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Fig. 5. Stationary Gaussian message trans-
mitted in an additive white noise
channel by phase modulation,
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Fig. 8. Stationary Gaussian message trans-
mitted in an additive white noise
channel by frequency modulation.
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Quasi-optimum demodulator for a sta-
tionary Gaussian message transmitted
in an additive white noise channel by
phase modulation.
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Two realizations for any Gaussian process with a rational

spectrum approaching zero for high frequencies.
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MAXIMUM A POSTERIORI INTERVAL ESTIMATION

Arthur B, Baggeroer

Research Laboratory of Electronics
| Massachusetts Institute of Technology
Cambridge, Massachusetts -

ABSTRACT

The problem of determining the maxi-
mum a posteriori estimate of a state
vector of a random process within an
interval is considered. The state vector
is characterized as the response of a
vector differential equation to a white
Gaussian forcing function. A modulator
produces a signal from this state vector
which is then observed over an additive
white Gaussian channel.

A set of differential equations
which the optimal estimate must satisfy
is derived by using Lagrangian multipliers
and the calculus of variations. The
derivation is analogous to methods in
optimal control theory.

In the case of a linear state-vector
equation and a linear modulator these
equations can be solved explicitly and
uniquely. The estimate at the interval
end point is shown to be identical to the
realizable estimate, and then a convenient
means of implementing the MAP receiver by
using this estimate is shown., The solu-
tion to the problem of filtering with a
fixed delay is also derived from the MAP
estimation equations.

For the linear case, a differential
equation satisfying the error is derived.
From this, a differential equation for the
covariance of the error matrix is derived,
A solution to this equation is given by
finding the appropriate integrating factor
and then using the covariance of error
matrix for the end-point estimate.

INTRODUCTION

The method of characterizing an
optimal receiver by a set of differential,
or difference, equations has been very
useful. Most previous applications have
been limited, however, to estimation at
the end point of the interval by using
just the past of the received signal.

This corresponds to the realizable filter-
ing problem., If we desire to estimate the
signal over the entire observation inter-

* This work was supported by the

Nat@opal Aeronautics and Space
Administration (Grant NsG-334), and bv a
National Science Foundation fellowship.

N67229904

val by using all of the received data, we
require an interval estimation procedure.
This 1is analogous to the unrealizable
filtering problem in which both past and
future data are used.

One approach is to estimate coeffi-
cents of a Karhunen-Loéve expansion of
the message., This approach leads to a
set of integral equations which the opti-
mum estimate must satisfy. Another ap-
proach is to apply the calculus of
variations to the a posteriori probability
density in order to maximize it. This
leads to a set of differential equations
which the optimal estimate must satisfy.
This approach has the advantage that the
set of differential equations may be
easier to implement in order to actually
obtain the estimate,

In this paper we shall be concerned
with maximum a posteriori (hereafter ab-
breviated MAP) estimation over the entire
observation interval.

DERIVATION OF THE MAP ESTIMATION EQUATIONS

We shall assume that the message
source may be characterized in a finite
dimensional state variable form. Con-
sequently, we represent this message
source as the solution to the vector dif-
ferential equation

dx(t)
T = f(x(t), u(t), t) To<t<Tf)
i(To) = Xg (1)
in which
x(t) is an nxl state-variable vector
characterizing the message
x(T_ ) 1s the nxl state-variable
o
vector at T,
u(t) is an mx1l vector forcing
function
t is the independent time vari-
able within the interval
To<t<Tf
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is a (nx1l) vector function of
the vectors x(t) and u(t) and
the scalar t.

[

The message source vector x(t) is
used to produce a signal vector
s(t3;x(t)), which is transmitted over an
addltlve noise channel. Therefore, the
received signal is given by

r(t) @ s(t;x(t) + w(t). (2)

A diagram of the system is illustrat-
ed in Fig. 1.

For the maximum a posteriori (MAP)
estimate we wish to maximize p(x(t)|r(t))
as a function of x(t) over the Tnterval
T o<t<Tes when E(t) has been observed at

the receiver., We now want to show that
max1m121ng this quantity is equivalent to
maximizing the quantity p(r(t)[s(t))
plu(t)) p(x ). To show this we firs

apply Bayes' rule to the MAP density.
This gives
p(g(t)|§(t)) p(x(t))

616D

p(x(t)|r(t)) =

c p(r(t) x(t)) p(x(t)) (3)

where ¢ is independent of x(t). Now since
x(t) is a state-variable vector, it is
unlquely determined by the initial state
x  and the forcing function u(t). There-
re, by assumming independence of X and
u(t), we obtain
p(x(t)) = P(EO’E(t)) = p(io) plu(t))
(4)
We also note that

plr(t) [x(t)) = p(r(t)|s(t,x(1)),
(5)

Since the observed signal density is
conditioned upon the transmitted signal
s(t;x(t)), which is completely determined
by zzf). Finally, we have

P(x(t) {r(t) = eplr(t)|s(t;x(t))
plu(t)) p{}o) (6)

with the constraints

dx(t)
—3r * £&x(t), ult), t)
x(Ty) = % .

7/3

In general the maximization of Eq.
(6) is difficult; however, if the various
factors are quadratic forms, the problem
is considerably more tractable, With this
in mind, we are led to the assumption of
Gaussian distributions for x u(t) and

w(t). We shall assume that—?he estimate
of the state at t = T_ is X,
o) o
EEE(TO)] =X . (7)

The error in this estimate is assumed to
be Gaussianly distributed with a covari-
ance matrix of PO

= p

EL(x(T,) - £ )(x(T) - o

3

-0
(8)

YJe now assume that the source function

u(t) is a white Gaussian random process
with mean gu(t) and covariance Q(t)§(t-t),
Efu(t)] = mu(t) (9)

and

ECCu(6)-m () (u(0)-m ()] =

Qt) 8(t-1) (10)

The final assumption is that the observa-
tion noise is also white Gaussian random
process with mean m (t) and covariance
R(t)6(t-1) =

Efw(t)] = m (t) (1)

and
ELCw(t)-m (D) (w()-m (x))7T] =

R(t) &8(t-1).
With these assumptions, we have
“Flgm BV xR,
(12)

- T
[g(t)-gu(t)]
o

_1
7
plu(t)) a e

e 3
“n

QO Lu(t)-m (£)at

(13)



Te

—% % [g(t)—mw(t)—g(tzi(t)]T R-l(t)[g(t)-mw(t)-g(t:i(t)]dt

p(r(t)|s(t:x(t)) a e ©

Instead of maximizing the quantity
p(r(t)[st:x(t)) plult)) p(x), we can

minimize the negative of its logarithm.
Consequently, we wish to minimize the
functional

1 - T -1 -
JCult),x ) = Sx -x 17 Po "Ix x 1 +
T
I (e)em (-s(tsxce)’ R
T
o]

(g(t)-mw(t)-g(t;i(t)) +

-1
(uce)-m (£»T o~ He) Cucer-m (£} ar,

(15)
with constraint

dx(t)
35 = f(x(t),ult),t) To<t<Tf
x(T ) = x .

We can incorporate the constraints
by using the Lagrangian multiplier techni-
que., Therefore, J(u(t), §o) becomes

T p Ll

] 1+

! =
Jult),x ) = 2 [x - %o

b

X
——o
1t T
5 ] (x(t)-m (£)-s(t;x(t))

! s(t5x

o]
RTHE) (2(t) - m (1) - s(t3x(1)) +

(uC)-m ()T g He) (ule)-m (1)) +

dx(t)

T
p(t) ( 5T

- £(x(t),ult), t))} dt

(16)

Before considering the minimization pro-
cedure, we want to examine the term

(1)
Tf T dx(t)
’,:'[" P (t) T dt.
o
Integrating this by parts yields
Teoo o ax(o) .
4 p(t) dt = p (Tx(Tg) -
o]
T T
Ter yx(r ) ff R o at
L - A T at %
© (17)

Now, let us denote the optimal estimates
of x , x(t), u(t), and s(t) by

A °aC AT AT .

X x(t), ult), and s(t), respectively.
Now let us extend J(u(t), xo) around

the optimal estimates. We get

u(t) 8 QCt) + esult).
(18)

The response of the message source to this

x(t) = R(t) + esx(t) + 0(e), (19)

where
g-—(<Sx) = 3§ §x + Eg su(t)
dt = 3x - u -
A A
5§(To) = 8x
0(e) + 0 at least as e? as e+0.

The resulting signal s(t;x(t))

A =
s(t) = s(t) + e3% §x + 0(e)
= IA (20)
o’
[The notation rm is interpreted as
= |A

(in) evaluated along the optimum tra-

jectory, i.e., the derivative with respect
to each component of x o6f each component

of f. The result is an nxn matrix.]
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Consequently, up to terms of order e we
have

Jult), x ) = JE),R ) +

etl® - x 17 P Trex, +
Te
[ [-(ottr-m ()-8t x(tnT R
TO
9s
= | sx(o) + @ctrom (£3) Q7o)
= A
dp(t) af
A A T L
6u(t) - —g ox(t)-p (1) X

of

6§(t)-gT(t) 35 su(t)] dt +

A

T T
p (To) 6x(T)-p (T ) 6x(T )}
£ f ) o) o) (21)

. N .
Since u(t) and go are the optimum

estimates, we must have

Ju(t), x )-J@0, X)) 2 0. (22)

Therefore, by combining the various vari-

ations, we have

Jut), x ) - I, X)) =

A - 4T -1 T
el(fx - x 17 P~7 = p (T ))) 8x  +
Te
[ {-Ixo)-m (£)-BCt:x ) IR (1)
TO
T

as dp~(t) T( , af ) )
= | - ——— - p (1) = sx(t) +
%y at % |,

of
A -1 T =
@Co-m, () ¢7H0-p (0 55 | )
su(t)) dt + p(T.) 6x(T.)}
= B gl OXbigll.

(23)

Since ¢ is arbitrary and we may neglect

the terms of higher order, this last term,

the factor multiplied by e, must be

7/3

'denticalky equal to zero in order for
u(t) and X, to be optimum,

We now require that p(t} satisfy
the differential equation

dp (1) T af
3t = =P (t) % +
= I

9s
(r(t)-m_(£)-8(t:x(tI)NT RTLI(1) —
p== - = — 35 A

(24)

or equivalently
dp(t) afT s |,
= . = E(t) + — R 7(t) x

dt ax | A 2
(p(t)-m (t) - s(t; R(¥)). (25)

As a boundary condition on p(t), we also
require

p(T) = 0. (26)

With this restriction on p(t), we
have

A — .T -1 T
([50—50] Py T-B (To)) §x +
T
f af
A T ~-1 T -
[ @(o)-m (£))7 Q7T ()-p (1) 37| ,)
T u
o
su(t) dt = 0 (27)
Now &x and su(t) are arbitrary.
Therefore,
A — T -1 T _
[xo—xo] Py - P (To) =0 (28)
and
A T n-1 T, , °L
(g(t)-gu(t)) Q “(t)-p (t) e =0
(29)
Equivalently,
VAN —
(50— io) o Po E(To) (28a)
and
A ot
3(t)—ﬂu(t) = Q(t) si AP_(t)
(29a)




By uging this last equation, we can solve
for u(t) and eliminate it in the equations
which the optimal estimate must satisfy,
Summarizing the results, we have

aR(t) A af
vl f(x(t),m, () + Q(t) e AR(t)),
(30)
dp(t) af ds
_ 92 2 -1
— = _32 p(t) + 32 R “(t) x
A A
(p(t)-m_(t) Reen
r(t)-m (t -s(t, X(t)), (31)
and 3f
ult) = m () + Q(t) 78 AR(t),
with
p(Tf) =0
H_ oy =
(X = x) = P p(T ).

These are essentially the equations
derived by Bryson and Frazier. The deri-
vation, however, is complete in that we
have derived the equations that must be
satisfied at an extremum of the functional
J. We have not shown that this extremum
is in fact a minimum. There is an analogy
here with the minimum principle for an
optimal control problem., The major dif-
ference is that ®(t) is unconstrained at
both ends of the interval. If we wished,
however, to convert this problem into an
exact dual of the cgntrol problem, we
could require that _(Tf) equal §filt(Tf)’

where gfilt(Tf) the optimal filtered, or

end point estimate, at T We can impose

£
this condition because both estimates

/A
Q(Tf) and Xei1t
of data to operate upon. For further dis-
cussion of the relevence to optimal con-
trol problems, we refer to ref, 3,

(Tf) have the same amount

As a consequence of the derivation,
we find that in order to obtain the MAP
estimate, we must solve a z_-dimensional
matrix differential equation. In general
these equations are nonlinear and there is
no general technique available to solve
them, The difficult feature of implement-
ing them on a computer is the boundary
condition

R(Tf) = 0.
We conclude by illustrating the

estimator equations for a phase modulation
system. Consider the following system:

dx(t)
dt

= =k x(t) + u(t)
Efu(t)] = 0
E[x(To)] =0
E[x2(T )] = P
o
Efu(t) u(t)] = 2kP §(t-t)
or E[x2(t)] = P
r{t) = A sin (mot + 8 (t))
Elw(t)] =0
N
o

Elw(t) w(t)] = o §(t-1)

The estimation equations are

N
dXCE) . kRt + 2kP p(t)
dt
dp(t) 2
_Ea¥_ = kp(t) - _Nf x cos(u_t+8R(t))

(r(t)- A sin (u t + 8R(t))

with the boundary conditions
p(Tf) =0
74 =
x(To) = P p(To).

MAP INTERVAL ESTIMATION FOR LINEAR SYSTEMS

In general, analytic calculations or
direct computer implementation of the
estimation equations are not possible. In
the case of linear systems, however, we may
proceed considerably further, The assumpt-
ion of linearity requires

dx(t)

= F(t)x(t) + G(t) u(t)
dt - -

(linear message

source)
(32)
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and

s(t;x(t)) = C(t) x(t)

{linear modulation}
(33)
Consequently, the estimation equations are
aR(t)

—— = F(OR() + 6(t) Q1) 6 (Op(t)

+ G(t) Eu(t) (34)

dp(t) T -1 A T
-t = C°(t) R (t)C(t) _)S(t)—F (t)E(t)

- Ty R (et - m (1))

(35)

In matrix form, these equations are

a4 [R
E?[:R(t)]

[{T<r) G(t)Q(t)GT(t)]
cT(tHr~Ltrc(t) Fl(t)
[:Q(t)] G(tim (t)

-— + plp)

p(+) -cTorR™ o) (2(t)-m (0

(36)

Because of the linearity, we can satisfy
the initial and final boundary conditions
by the superposition of homogeneous and
particular solutions to the estimation
equations.

. Before proceeding, we want to discuss
briefly the homogeneous system. For con-
venience, let us denote the matrix

F(t)
W(t) =

G(t)Q(t)GT(t)}
cTeortercn)

~FY(t)
(37)

by W(t). Let ®(t,T°) be the transi-

tion matrix associated with the homo-
geneous version of the estimation equa-
tions,
d®e (t,To)
—_——c W(t) @ (t,To)
dt
(38)
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with

® (T, T) = I,

At this point we with to emphasize
the importance of this transition matrix.
Virtually everything associated with
linear estimation of state variable can be
related to or determined from it. We also
will have cause to consider a partition of
this matrix of the form

® (t, T) =
[e]
|
® et To_ 1 O xplteTe)
®px(t,'ro) | © pp(t,T )

| (39)

where the matrices of the partition are
nxn, We now consider implementing the
estimation equations,in order to obtain
the MAP estimate of g(t). Let ip(t) and

gp(t) be solution to the estimation

equations with the initial conditions

(40)

"
x4

ip(To)

n
jo
.

Ep(To) (41)
In order to satisfy the conditions

4 T -

X(T )-x,= P plt )

Bp(Tf) = 0,

we add to ip(t) and Ep(t), a linear

combination of the columns of the transi-

tion matrix
Rt R () a
U P+ @ (t’To) -
p(t) b
P
(u2)

or equivalently

0 -
x(t) = ip(t) + ®xx(t, To) a+

t, T ) b
® xp( »T ) b (43)




plt) = Ep(t) + 8 px(t,TO) a+

® pp(t,TO) b. (4u)

Applying the initial boundary condition
yields

Pob aa . (45)

Applying the final boundary condition
yields

_ -1
b= =[®  (T(,T )P+ @ (T(,T )]
B, (Tg) (46)

Therefore, if we let

? (t,T ) = @ wx (7)) P+ @ xp(t,TO).
(47)
op(t,To) = @ px(t,To) Pt ® pp(t,To),

(u8)
the solutions to the estimation equations
are

74} -
x(t) = zp(t) - QX(t,TO)

-1
@p (Tf,To)Ep(Tf)

(49)

- -1
p(t) = Ep(t) - op(t,To) ¢p (Tf’To)
Bp(Te) (50)

Notice that we could have specified
®x(t), To) and ¢p(t,To) as solutions to

the homogeneous equation with initial
conditions of Po and I, respectively.

This would not indicate the relation to
the transition matrix of the equations,
and, therefore, to the other aspects of
the linear estimation problem. Since the
transition matrix may be precomputed, the
only terms that must be computed by using
the received signal r(t) are ip(t) and

Rp(t).

In spite of the apparent simplicity
of the solution, there are practical
problems in its implementation, The
system of equations represented by the
estimator equations is an unstable system.
Consequently, for large time intervals,
l.e., (TF—TO) is "large," ip(t) and Ep(t)

Therefore, to find

(t), one must take the

become rather larée.
the MAP estimate X

difference of two large numbers, which
implies computational difficulties. An-
other difficulty is that ¢x(t,To) and

op(t,TO) tend to approach singular matrices

for large (t—TO). This leads to inac-

curacies in the matrix inversion required
for the MAP estimate. As a result of
these difficulties, discussed qualitative-
ly here, we are led to another means of
implementing the solution to the equations.

If we consider the estimate at Tf,

the end point of the interval, we see

that this estimate is based upon only past
data. Therefore, this estimate should
correspond exactly to the realizable filter
estimate as formulated by Kalman and Bucy.

To prove this, we consider the
estimate at Tf. This is given by

R - x,(Tg) = (T, T ) p (Tp)

where (51)

-1
e(TEyTy) = 0 (TeaT ) 0 T (Te,T )

(52)
We now,will derive differential equations

which E(Tf) and e(Tf,To) must satisfy.

If we differentiate the equation for
e(Tf,To) with respect to Tf, and make use

of the differential equations which
¢X(Tf,To) and ¢p(Tf,To) satisfy, we obtain

d
at; (e(T,,T) ¢p(Tf, T M) =
d ox(Tf,To) (53)
de
de(Tf,To)
———aTg——— ¢p(Tf, TO) + e(Tgy TJ) X

T -1
fc' (Tf)R (Tf)C(Tf) ¢X(Tf,To) -
T, - -
F (Lf) op(Tf, To)] = F(Lf) ®X(Tf,To) +
T
6 (T «Tg) G (Te) Op(Tf,To)]
(54)

Multiplying both sides of above by
¢p(Tf, To) gives
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de(Tg,T,)
O = R(T)e(T,,T) + e(Ty,T)

de

T -1
FIT,) - e(T;,T ) CITERT (T

T
C(Tf) s(Tf,To) + G(Tf) Q(Tf) F (Tf).

(55)

with the initial condition

e(Ty TJ) = P .

(56)
We now differentiate the estimation

equation of x(Tf). This gives

aR(T,) R (T | 4e(Tg,T)
dT, dT dT,
dp (Tf)
R (T) - e(T(T) —_55__-
£
(57)

Substituting the various expressions for
the derivatives, we obtain

A
dx(T.)
=" f A -
—_— = F(Tf) X(Tg) + C(‘f’To) x

de

T -1 oy Do
CHTHRT (T ((T)-CITHR(TL))
(58)

with

Equation 56 and 58 are exactly those
derived by Kalman and Bucy for the optimal
ealizable filter, The end point estimate
(Tf) is completely specified by the dif-

ferential equation 56, In turn, this
differential equation is completely speci-
fied by e(Tf,To), the solution of Eq. 56.

In the filtering context, e(Tf,TO) has

been shown to be the error covariance
matrix of the estimate of g(Tf). We note

the important point here that the transi-
tion matrix of the MAP estimator equa-
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tions, completely specifies e(Tf,To)

and consequently the structure of the
optimal filter, i.e., once we have
determined this transition matrix we can
completely specify both the optimal filter
and optimal MAP interval estimator for
arbitrary p, and 25 .

Equation 56 is a matrix Riccate
equation, Levin has described a method
of solving this type of equation by as-
soclating a set of linear equations with
it.* We have found that this set of
linear equations is identical with the
homogeneous version of those specifying
the MAP estimate over the interval.

The optimal filter allows us to solve
for the MAP estimate in a very convenient
fashion., We first perform optimal filter-
ing upon the data to obtain —filt(Tf)'

We then use this estimate to solve the
estimator equations backward in time from
Tf by using the complete set of boundary

conditions at Tf.

A

x(T Xrilt

Rerpy = (T,

f

p(T¢) = 0 (59)
In many practical cases, one wishes to do

filtering with a fixed delay, not smooth-
ing over the entire interval To<t<Tf.

By using the MAP estimation equations in
conjunction with the realizable, or end-
point filter, we can determine a structure
for such a filter with fixed delay.

For a given set of boundary conditions
at scme t', the solution to the estimation
equations (not necessarily the optimal
solution) at t can be written

[:E‘t)} - ® (t,to)[ E(to)] +
p(t) plt)

t G(1) mu(r)
[ @&, dt
t

TR () (p(t)-m (1))
(o] — —W

(60)

Now consider the optimal estimate at
t o= te-b, where A is a fixed delay

(Tf'To)>A~ By using the boundary con-
ditions specified by the optimal filter,

this estimate is given by




A
R(Te-0)] Rei1e(Ty)
N = @ (Tg-8, Tg)
R(Tg-8) 0
Te
® (T.~4, 1) x
Te s £7%
G(t) m (<)
—u dt
-cTeor o (20 -m (0
(61)

If we differentiate this equation with
respect to Tf, we obtain

a |R(Te-0)

dT¢ | p(Te~a)

d_
aT—f (0 (Tf-A, Tf))

R

... (Tg)
~filt" " f @ (Tf-A’Tf)
1]
dxeiy ¢ (Te
de
- ® (Tf-A, Tf)
0
G(Tf)gu(Tf)

T -1
-C (Tf)R (Tf)(E(Tf)‘Ew(Tf)

. G(Te-8) m (Te-8)

T -1
=CT(T=8)R™H (T =) (£(Tp=a)~m (To-4)

Te 4
- ‘{‘ - a?g ® (Tf-'A,T)
£
G(t) m (1)

dr
~c(OR™H O (2(0)-m, (1)
(62)

This last term can be evaluated by using
the relation

d e

ar;

- (Tg=8,7) = W(Tg=2) @ (T4-8,1).

(63)

Since W(Tf-A) is independent of the

integration variable 1, it can be taken

outside the integral. The value of the

resulting integral is given, however, by
our original expression for the optimal

estimate, Consequently, this last term

is given by

Te ae@ (To=,1)

- —
Tf—A £

rG( ) ()
™) m Cx
—u dr

-C(OR™ (1) () -m (1))

i
R(Te-8)

W(Te=0) -8 (Tg-8, Tp)
R(Tg-0)
L

\ -

Efilt(Tf)-k

0 _J (64)

By substituting this in Eq. 63, we obtain
the differential equation

A
x(T_.=-A)
£ 25 (@ (Tpma,10) +

T |pre-nd| dT¢

|
[

+ @ (Tf-A,Tf)

- 6(Tg) m, (Tp)

T -1
CT(TIR™ T (R(T L) -m, (T())

G(Tp-8) m,(Tema) .
-cT¢T . -8)R"H(T -8) (£ (T ~A)-m (T,-4)
f f - f - f

Q(Tf-A)
W(T-8) -
R(Tf-A)

A
Xesq4(T
® (Tg-4, Tf) Xri1¢(Tg)

o 0
(65)
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In order to specify the initial conditions
at Tf= A, one must actually solve for the

MAP estimate over the interval (TO,TO+A).

The form of the filter structure is rather
complex; however, even in the infinite
interval, stationary case the filter
structure is usually complex. In the case
of a time-invariant system the equation
simplifies considerably. In this case

Wit-t)
® (t,to) = e .
(66)
By assuming mu(t) = gw(t) = 0, we obtain
A

a |ETe |
e |pre-0)
d% (T.)

2Filt' f A

. FXeipp(Te)

_________________________ +
C RTHR(T-C Rpp 1o (T

[g(Tf-A) ( 0
W‘ ——te——a + -=grzy--=====--

| p(Te-0) ~CTRTH(R(T=8))

(67)

for the optimal estimate with a fixed
delay from the end point of the interval.

By using the result of eq. 58
A

e a0

£ - =filt" " f

To-1 2
e(Tg,T) CTRTH(R(TL)-C Xpo) (T,

we have
A
X(T_.-8) e(T.,T )
U I S BN
dTe | peTe-0) I
T

-1
C' RTHE(T)-C xp  (T)) +
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10

R(T-0) T o

+

i
T.-1
p(Te-b) L-c R

(E(Tf-A))

(67a)

where the initial conditions g'(O)
and p'(0) are determined by solving the
MAP equations over the interwval (TO,T0+A).




COVARIANCE OF THE ERROR MATRIX FOR LINEAR SYSTEMS where E(To) is the actual error at To;

An important aspect of MAP interval estima~ El(To) is the a priori initial error.

tion for linear systems is its performance. This The original hypothesis assumes e¢_(T )is an
is commonly expressed in terms of the covariance =170
of the error matrix., We now will determine a
differential equation which this matrix must T
satisfy., Then we will solve this differential E[Ei(To)EI (To)] =7 D)
equation in terms of the transition matrix of the o

estimation equations and in terms of the co-

independent random variable with

variance of error matrix for the linear filtering We now want to consider brieflv the solution
problem. of the error equations. The development is
exactly parallel to the solution of the estimation
Let us indicate the estimation error at t by equations. We specify the particular solutions
£(t) = 2(t) - x(¢) e (t)
The covariance matrix is then defined as RP(t)

T to be solutions to the non-homogeneous error
e(t,To) = E{e(t)e (t)] equations with initial conditions
e (T = g,(T)
By differentiating the expression for g(t) and by P
substituting eq. (), we obtain Bp(To) =0

de(t) dX(t)  dx(t)

= F(o)e(t) + C(t)¢(t)GT(t)2(t) = 6(e)[u(t) - m (t)]

dt dt  ~ dt
(68)

When the expression for r(t) is substituted in
the costate equation, we have

dp, T -1 T T -1

T T C(BR T(B)6(H)elt) = F(O)p(t) - C (R "(£) [w(t) - m (£)]

In matrix notation these equations, which (It can be verified that p (t) is the same for

will be called the error equations, are both the estimation and erfor equations.) UWe

add to this particular solution a solution to the
homogeneous version of the equations. In order

g—t- [76-'-(-2]= W(t) [iﬁ.tl] - | 6B [ule) - m ()]

p(t) p(t) T -1
¢RI [w(e)-n (8)]
(69)
The boundary conditions which must be satisfied
are that the boundary conditions be satisfied, we find
that this added term is the same as the corres-
ponding term in the estimation equations, so that

2(Tp =0 the total solution is
X(T) -x =P p(T) . -1
=0 o o e(e) = E?(t) - ¢x(t’To)°p (Tf’To)Bp(Tf) (74)
~1
Rewriting the initial boundary condition at T p(t) =p (£) = ¢ (t,T )d " (T.,T )p (T.)
yields © Eo ptelp oyl (75)

A quick check will show that the boundary
(i(To) - ﬁ(To) - (50 - L(To)) = Pon(to) »  (70a) conditions are satisfied,

or EXTO) —.EE(T°) = POR(TO) . (70b)



Now consider the expectation

T
£(t) e(t)
E{[R(t)] [ B(c)] } = P(t,T ) =

[e(t "y ) 'P p(t,To)]
(t,T ). (t,T05

(76)

that is, the covariance matrix that we desire is
one of the partitions of the matrix
= T
e(t,T)) = P__(£,T ) a7

By differentiating the expression for
P(t,TO), we have

e o[l
T
[;__%)%] [j_t-[iéé;] ]} (78)

When (78) is substituted, we obtain

1T
dP(t,To) B W(t)P(c,To) + P(t,To)h (£) +
dt -
K(t) + K (E) (79)
where
T
e(e)qr6(e) [ult) - mu(t)]
K(e) = 'E{[EZEF}[C(c)R‘lm[g(t) - 1“-w<t”] }
(80)

We shall now determine the term, K(t).
Since the transition matrix is the same for both
the estimation and error equations, we may write
K(t) as

f ® (t, T)[G(T)[U(T) - mu(t)] ] dt x
C(T)R() [w(T) - n, (1

0
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T
[G(t)[g(t) - m,(©)] ] }
HOLEOINOEE RIS (&1

Since u(t) and w(t) are independent white
Gaussian processes, we may evaluate the second
term of this expression quite easily,

This is given by

K,(t) = {t ® (t,7)

[o]

[c<c>o<c>cT<t> 0

§(t=-t1)drT,
0 cT(c)R'l(c)c(t)]

(82)

The only nonzero part of the integrand is at the
upper limit, Therefore, by making use of the
symmetrical properties of the delta function, we
have for this second term

Ky (t) = %[C(c)omv (e}, 0 ]
0 C (t)R™ (t)C(t)
(83)
Now we must consider the first term
e(T )|} G(t) [u(t) - m (t)]
K, (t) = -F4 | -—-2- e
PID LT o™ () w(t) - m o))
(84)

By evaluating the solution to the error equations
at To, we have

-1

.E.:.(To) = CI(TO) - ¢X(TO’TO)QP (Tf‘tO)EP(Tf)
1 (85)

B(To) = - ¢P(T°,To)<bp (Tf’To)Bp(Tf)
(86)

Since

¢X(TO,TO) = Po (87)
QP(TO,TO) =1 (88)

these equations may be written




2T & T e @p-l(Tf,To)Ep(Tf)
2(To) 0 I (89)
-1 .
“legr] _[r,] o, ) [O,I]’Vgp(Tf)
0 1 2T
(90)

We are now in a position to evaluate K_(t).

First, we note that when we perform thé expecta-
tion, the term involving ¢ (To) will vanish
because it is independent “of u(t) and w(t).
Consequently, from Eq. (95) we are led to the term

T

I}

(91)

€ (Tf)}[c(t)[g(t) - m (8)]

(K'l(t)=E{|:;:

We are able to evaluate this term in a manner
similar to that for Kz(t). First we write

Tl OR O a0 - n (0]

[ET(Tf)

£I(To) Tf
P.p(Tf>] = 0 (Tf,To)[ o ]—4 0 (T;y1) x

o

]

Now we perform the indicated expectation of
Eq. (97). Again we note that the term involving
EI(TO) vanishes because of its independence.

[ G(1) (1) - m (D]

TR [ - n (1) (92)

Therefore we are left with the term

Te
K',(t) = E -4 ® (T.,1)
o
T
6(0) [u() - m (1)] G(e)[u(e) = m (£) dr

=1(t)

TR () - m (01 @R fue)m (0]

(93)
which because of the white Gaussian assumption for
u(t) and w(t) becomes

Te
K' () = - { ® (1,0

o

[G(T)O(T)GT(T) st -1)dT .

0 chR‘l(r)cm}

(94)

Noting that t is always within the integra-
tion region, we integrate over the 6. function to
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obtain

K'l(t) = —2®(Tf,t)K2(t) . (95)
Finally by using Eq. (95), we have
K. (t) = 28(t,T )P L (T.,T)
1 o [_%r p £’ o
I
T
0 8(T_,t)K, (t)
[1] rre (96)
The complete expression for K(t) is given by
- - -1
K(t) = 2@(:,T0)[$4 ¢ (T,T)
T
0 G(Tf,t)K2(t) + Kz(t)
1 (97}
with
T = WP, ) + P(E,TONT () +
dt
T
K(t) + K (t) (98)

The boundary conditions for the equation are
determined from the boundary conditions for the
error equations, The condition Bp (Tf) = 0 implies

P (TeTy) = P (T T) = P (T,T ) = 0

(99

If we multiply the initial condition by its trans-
pose, and then take the expected value, we obtain

E(TO,TO) - poppe(To’To) - psp(To'To)Po +

PP =
oPppTorTo) %o = 2o

(100)

The most convenient way of solving this
equation is to determine e€(T_,T ) from the variance

Eq. (56), of the end-point estimate, and then solve
MAP covariance eanation hackwards from Tf.

We shall now consider the solution to this
matrix differential equation for the covariance
of the error, First, we want to note some
properties of the adjoint system., The adjoint
system is defined to be the solution to the system
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dy(e,T )

T
=W (tyTo)w(tpTo)
dt

(101)

with the initial condition w(To,T y=1 .
The relation to the transition malrix is given by

T -1
(¢, T ) =@ (£,T ).
v ° ° (102)

If we premultiply the covariance of error
equation by wT(t,To) and then post-multiply by
w(t,To), we obtain

T T
‘1' (t'TO)dP(t'TO) ‘J)(t.To) ‘\4’ (t’TO)
dt

T T -
[L(t)P(t,To) + P(t,To)W (t)lW(t.To) =

T T
V(6T ) IR(E) + K ()]0(L,T ) (103)

The left side of Eq. 103 is a derivative, that is
(0T (6, T )P(E,T )u(e, T )] =
"o o *“o

4
dt

(e, T ) r(e) + KT (D) e, T )

(104)
Integrating this yields
T
¥ (t.To)P(t,To)\})(t,To) =
1 t T T
P+ oy (1, ) [R() + K (0] ¥(r,T )dt
To
(105)

where P1 is a constant to be determined. We
determine this term by specifying at Tf, that

P(T,,T,) = [e (T,,T) 0
0 o],

(106)

where ¢(T_,T ) is the variance of the realizable
estimate, Consequently, we have
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T
¥ (t,TO)P(t,TO)w(t,TO) =

T
V(T TOR(T,, T W(T,,T)

T
- [T G + KO, T
t o]

(107)

We now want to show that evaluating the integral

can be reduced to a single integral. Consider the
term

f

e =[5 eTLT KNG, T AT

rs—n3

(108)
(the other term is the transpose, LT(t)).
This is given by
. Te 1
L(t) = { v (T, T K (D9(T,T )dT =

T T

2ff Ter,1 60, TP |67 ., olo] «x
t V(LTI T P, pf’o

I I

@(Tf,T)Kz(r)w(T.To)dT
(109)

We note that

T
¢ (1,7 )0(1,T ) = I
° ° (110)

and

@(Tf,T) = @(Tf,To)@(TO,T) =

-1 T
@(Tf,To)@ (T’TO) =®(Tf.T°)¢ (TlTo)
(111)

Consequently, we now have

T
L(t) = l:I - Z[P}p-l(Tf,To)[O] @(Tf,To)} x
I 1

T

f
[ TR (D0, T Ydr
t
(112)




Noting that

-17 T
V5TV (T, T) = 6(e,Ty)
(113)
and

-1 T
q)(Tf’To) W (t’TO) = e (tQTf)
we finally obtain

T
P(t,To) = @(t,Tf)P(Tf,To)O (t,Tf)

T
[G(t,To)L(t)e (t.Tol -

[e(t,To)L(t)@T(t.To)]T ’ (114)

where

T

P -1 0
¢p (Tf,To);@(Tf,To)] x

I

L(t) [1-2

8 (T, 1)K, (1) @T(To,t)dr

T
1 [ 66 (v -0
K, (1) = 5 [ o cl(or 1(t)c(t)]'

(115)

In the case of a constant parameter system,
the results simplify because of the exponential
nature of the transition matrix.

CONCLUSION

We have found a set of differential equations
which the optimal estimate must satisfy, These
differential equations had a set of mixed boundary
conditions associated with them., It is this
feature that made the solution difficult to
implement in the general nonlinear case,

In the linear case we could solve the equa-
tions by superposition methods, We found that a
convenient method of solution was to perform a
filtering operation and then solve the estimation
equations backward from the end point,.

By differentiating with respect to the end
point, we could determine a filter with a fixed
delay from the end point.

We found a set of equations which the error
in the optimal estimate satisfies when the system
is linear, The forcing functions for these
equations were the white processes driving the
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message source and corrupting the observation.

By performing an expectation upon these equations,
we determined a differential equation involving
the covariance of error matrix, We then
integrated this equation to obtain the solution
in terms of the end point covariance matrix and
the transition matrix of the estimation equations,
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SIGNAL OPTIMIZATION FOR ADDITIVE NOISE CHANNELS WITH FEEDBACK*

Jim K. Omura, [Stanford University

SUMMARY

In this work, a communication receiver is
regarded as a dynamical system described by a
difference equation where the last state is the
test statistics upon which a decision is based,
When noiseless feedback to the transmitter is
allowed it is observed that the signal selection
problem is essentially a stochastic control prob-
lem, With an appropriate criterion signals are
found that exploit the feedback to achieve con-
siderable reduction in coding and decoding com-
plexity over what would be needed for comparable
performance with the best known signals for the
one way channel. The schemes developed could be
very important for satellite communications since
it allows for a substantial decrease in the coding
effort while permitting the satellite to transmit
its information at a rate arbitrarily close to
channel capacity.

This control theory approach depends only on
the first and second order statistics of the
noise, handles multiplicative noise in addition
to additive noise in the forward channel, and
naturally extends to consideration of noise in the
feedback link.

INTRODUCTION

Recently there has been a considerable amount
of interest in feedback communication systems; in
particular, cases where the feedback link is noise-
less, One of the main reasons for this is the ad-
vent of space communication where the power in the
ground-to-satellite direction can be so much
larger than in the reverse direction that the first
link can be taken to be an (essentially) noiseless
link., Similar situations may also arise elsewhere.

The usual approach in designing one-way com-
munication systems is to first select signals to
be used by the transmitter and then find an opti-
mum receiver based on these signals. For example,
if the transmitter is to send one of M messages at
any given time over an additive Gaussian noise
channel one first selects M signals to represent
the messages. The minimum probability of error
receiver is then designed around these signals
which in this case is a linear operation on the
received signal followed by a decision process.
With the availability of feedback, however, one
can view the problem from the opposite point of
view., Namely, fix the receiver and design signals
around the receiver so as to minimize probability
of error. In particular, if one regards the

*
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The author is now with the Stanford Research
Institute in Menlo Park, California.

N67-29905

receiver as a dynamical system whose state is the
test statistics upon which a decision is based,
the signal problem is essentially a stochastic
control problem.

In this work, this control point of view is
taken in designing signals for various channels.
Motivated by the work of Schalkwijk and Kailath,%
this work generalizes mytch of their results and
extends them to consideration of multiplicative
channels and noisy feedback channels.

2

The word ''channel"” stands for physical per-
turbation in the transmission medium and in the
receiver front end, as well as for transmitter
constraints. Examples of transmitter constraints
are an average power constraint, a peak power con-
straint, a constraint on the signal bandwidth, etc.

Before discussion of the main results, a
brief discussion of related work is given next.

Background

Most previous work on feedback communication
systems consider only noiseless feedback. It
seems reasonable that the availability of a noise-
less feedback link should substantially improve
communication over the noisy forward link. There-
fore, Shannon's result® that the channel capacity
of a memoryless noisy channel is not increased by
noiseless feedback is rather surprising. Still,
some advantages should accrue from the presence of
a noiseless feedback link and, in fact, the ad-
vantage is that noiseless feedback enables a sub-
stantial reduction in the complexity of coding and
decoding required to achieve a given performance
over the noisy link.

A general discussion of feedback communication
systems, with reference to earlier work by Chang
and others, is given by Green? who distinguishes
between post- and predecision feedback systems.

In postdecision feedback systems the transmitter
is informed only about the receiver's decision;

in predecision feedback systems, the state of un-
certainty of the receiver as to which message was
sent is fed back. Postdecision feedback systems
require less capacity in the backward direction;
however, the improvement over one-way transmission
will also be less than that obtainable with pre-
decision feedback.

Viterbi® discusses a postdecision feedback
system for the white Gaussian noise channel, A
decision is made when the a posteriori probability
computed by the receiver exceeds a certain threshold
determined by the probability of error. The trans-
mitter is informed by means of postdecision feed-
back that the receiver has made its decision, and
it then starts sending the next message. For rates
higher than half the channel capacity, the relia-
bility is increased roughly by a factor of four as
compared to one-way communication.
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Turin®;’ has a predecision feedback scheme
applying to the white Gaussian noise channel, and
giving an even greater improvement over one-way
communication than Viterbi's scheme does. The re-
ceiver computes a likelihood ratio and makes a de-
cision when this likelihood ratio exceeds a
threshold set by the probability of error. The
value of the likelihood ratio is fed back to the
transmitter continually during the decision-making
process. The transmitted signal is a function of
the binary digit (that is, O or 1) being sent and
of the value of the likelihood ratio, and is ad-
justed so as to make this ratio increase as fast
as possible, Average and peak power constraints
are imposed. The average time T for deciding on
a binary digit turns out to be T = (Pay/Ng)~1in2
where P, is the average power and N, is the (one-
sided) noise power spectral density. The proba-
bility of error P, vanishes if infinite peak power
and infinite bandwidth are allowed. Hence, a rate
is achieved that is equal to the channel capacity

C = ﬁiz nats/sec . (1)
o

Schalkwijk and Kailath1:2 developed a prede-
cision feedback scheme motivated by the Robbins-
Munro® stochastic approximation procedure. With a
noiseless feedback link available, they considered
the problem where the transmitter has to send one
of M possible messages to a receiver where each
message takes T seconds to send. Defining sig-
naling rate as R = (4n M)/T nats/sec and having
only the transmitter constraint of average power,
Pav, this scheme achieves rates up to channel
capacity, C = Pay/Ng, with error probability given
by

/3 o[CRIT

-1-
Pe = 2 erfc e1‘577 } . (2)

Schalkwijk2 modified this scheme by requiring
the transmitted average power to be constant at
each iteration, Imposing both an average power

*
"Nats" is defined as natural units of information
in accordance with IEEE standards.

TThis is a corrected version of their result, In
Ref. 1, Eq. 11 becomes

2
o 2
PaV T = 1z + ¢ (In N + ,577)
giving the relation Qz PaVT
—( 2+.577>—4- >
120 o}

N =e

so that optimizing with respect to az gives
o =12 02 = 6 N,. (Compare with Eq, 15 in
Ref. 1.)
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constraint, P, , and a signal bandwidth restric-
tion, W, this scheme achieved rates up to channel
capacity, C = W 4n (1 + P,,/N W), with the error
probability
P =WT
2WT - 1 b A
2WT N W

P, = 2 erfc /3 —s . (3)
(W)
e

This coding scheme developed by Schalkwijk gave
the first deterministic procedure to achieve rates
up to capacity for the band limited white Gaussian
noise channel,

These schemes of Schalkwijk and Kailath moti-
vated the work presented here.

The Problem

Here discrete-time channels that are derived
from the continuous-time channels are considered.
Following the control theory point of view a com-
munication received is regarded as a dynamical
system described by a difference equation, The
variable (state) of this equation is the test
statistics upon which a decision is based at some
fixed terminal iteration, N. If noiseless feed-
back to the transmitter is allowed, it is observed
that the signal selection problem is a stochastic
control problem where the state of the system is
completely observable. With noise in the feedback
it is a stochastic control problem with noisy ob-
servations of the states.

Considering the signal selection problem from
this control point of view the following assump-
tions are made:

1. The receiver is linear and discrete in
time with its states given by the difference equa-
tion,

1

= ¢ -
1 WX T Er, k=012, ,N-1

4)

th
where Xy is the state at the k iteration,
{ N-1 N-1
) e
M
e oo Ke=o0
are free parameters of the receiver,

r, is the received signal from the
channel at the kth iteration,

and there are N iterations taking a
total time of T seconds.

2, One of M possible equally likely messages
is sent at any given time.

3. The receiver bases its decision on XN
where the decision regions consist of the unit




interval, [- 1/2, 1/2], divided into M equal
length disjoint subintervals, The jth message is
chosen only if ¥y lies in the jth subinterval of
- 1/2, 1/2].

4, The criterion for choosing signals is
the minimization of E(XN - 8)2 under the con-
straint that the average power of the transmitter,
Pyy, is fixed. Here 6 is the center of the sub-
interval corresponding to the sent message. The
signal sequence is denoted

{mk}

and the constraint equation is

N-1

k=0

N-1
2
Pav = % E 2 mk . (5)
k=0
5. The message points, 6e®, are essentially

uniformly distributed over [- 1/2, 1/2] (for large
M) with variance,

2 1
Var(g) = Oo =13 . (6)

This situation is illustrated in Fig. 1,
where as yet no assumptions have been made con-
cerning the feedback link. As an example, if the
feedback link is noiseless, then y, = §, = ¥, for
k=1, 2, ..., N-1,

Source I

6

Signal |my|Forward| r
8 —t‘ L5 Xk+ I:¢k xk‘f'kak Decision
Processor Channel
y S ; X
k___|Feedback| k| Signal k
Channel Processor
Fig. 1

Figure 2 is a sketch of a typical sequence
showing how

N-1

{Xk}

might behave and how the decision is made.

k=0

With these assumptions, the goal is then to
find optimum signals,

N-1
{"‘k} ’
k =0

as defined by assumption 4, for a given forward
and feedback channel. In general at the kth
iteration the signal component is based on 9, and
the observations of the receiver up to the kth

Xk
i
2 1
* ¥ Message
* -~
. ° 16 Interval
. 4
e ® . 4
1 +—4—+ k
123 4 5 N-2 N-l 4+ N
-+
-+
L T
2
Decision based on XN'
Fig. 2
iteration,
i k
v } .
S j=1

Instead of minimizing probability of error, the
criterion chosen is to minimize the distance

E(XN - 8)2. This is closely related to minimizing
probability of error for the Gaussian additive
noise channels, One can see from Fig., 2 that for
the noiseless feedback case the transmitter tries
to "control” the states so as to get x, as close
to § as possible., With noisy feedback this con-
trolling is hampered by poor observations of the
states.

Stated in this manner, this is essentially a
nonsequential estimation problem upon which is im-
posed a multiple hypothesis structure. It is non-
sequential since the time of decision is fixed
rather than a random variable., The criterion
E(XN - 8)2 is really an estimation criterion so
that if a transmitter (satellite) is to send some
measurement data normalized to [- 1/2, 1/2], this
data would not be quantized into one of M levels
but sent directly. However, by imposing a quanti-
zation one can then interpret the result as a
multiple hypothesis problem where probability of
errors and rates of information are evaluated.

Finally it should be noted that in designing
a communication scheme one should attach a cost to
complexity of equipment., It will turn out that
solutions to this problem result in very simple
schemes without considering such costs. Another
important byproduct is the insensitivity of the
schemes to the particular noise statistics. Also
once the optimum signal sequence is found a second
order optimization with respect to receiver
parameters

is possible. This is done for the additive noise
channel and the multiplicative noise channel when
noiseless feedback is assumed.
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Results

This problem is solved for the additive noise
channel with noiseless feedback. Assuming further
that the noise is a white Gaussian noise process
with spectral density No/2: the probability of
error for the wideband channel (no bandwidth re-
striction on the signals in the channel) is found
to be

[c_-R]T

1 ™)

Pe = 2 erfc {/5 e

where

When signals are limited in bandwidth to [~ W, W],
the error probability is

[CW—R]T

boo®

el
ll

2 erfc {/3 e

where

C
w

Pav
W in <l + N_OW/ .

The optimum schemes developed in this work
are dependent only on the 1lst and 2nd order sta-
tistics of all random variables, although all
error probabilities are evaluated under a Gaussian
assumption. Throughout this work a control theory
approach is taken using dynamic programming as the
main tool. This approach is new and versatile as
made evident by its ability to handle noisy feed-
back and multiplicative noise problems as well as
the usual additive noise forward channel with
noiseless feedback. These cases will appear soon
in a Stanford Electronics Laboratories report.

ADDITIVE NOISE CHANNELS WITH NOISELESS FEEDBACK

This paper is devoted to developing an opti-
mal feedback communication scheme for the additive
noise forward channel with a noiseless feedback
link. The additive noise is assumed to be white
with double-sided spectral density N0/2. The
optimization is carried out in two steps: first,
signal optimization based on the control theory
point of view, and then receiver parameter opti-
mization using ordinary calculus. This optimum
scheme is then evaluated in terms of probability
of error and information rates for the white
Gaussian noise channel,

The Discrete-Time Channel

It is convenient to work with discrete-time
channels that are equivalent to the continuous-
time channels under consideration. This makes it
possible to work with finite sequences of numbers
rather than with continuous-time functions. In

7/4

particular, the transmitted signal representing a
message will be a sequence of numbers,

N-1

{mk}k o

so that signal optimization consists of finding N
optimum numbers rather than finding a function of
time.

Consider the zero mean additive noise channel
in Fig. 3. To obtain a discrete-time channel from

n(t)
mt) \“"/ ri1)
Fig. 3

this continuous-time channel, assume that the
message information is transmitted by suitably
amplitude modulating the amplitude of a known
basic waveform ¢(t). The signal in the channel
will thus be of the form

N-1 T
m(t) = I mkm(t - k ﬁ) s 9)
k=0
where T/N will be specified later. The basic

waveform, ¢(t), is required to have unit energy
and to be orthogonal for shifts of T/N; that is,
®(t) should satisfy

ja(t - i %)®(t - %)dt =65 . Qo

Reception will be achieved by using a filter
matched to ¢(t), that is, a filter with impulse
response h(t) = ¢(- t). The output to this matched
filter at t = k(T/N), k = 0, 1, ..., N - 1 will be
the sequence

N-1
{rk}
k =0
where re = m + ny, and
n = [n(t)e(t - k Syat . (11)
k N

With this modulation and reception, the
discrete-time channel shown in Fig. 4 is obtained.

Ny

my Fr=my + 0y

N

Fig. 4



If the additive noise of the continuous-time
channel is white with double-~sided spectral den-
sity No/2, it is easy to show that the noise

will be uncorrelated zero mean random variables
with

Enn, =06, . B (12)

where 02 = N,/2. When the additive noise is
Gaussian, these random variables will be Gaussian
and therefore independent. In the Gaussian case,
it is easy to see that the discrete-time channel
thus obtained is completely equivalent to the
original continuous-time channel. This follows
from the fact that the matched filter is the ideal
receiver for the white Gaussian noise channels and
therefore preserves all the information in the re-
ceived waveform that is relevant to the decision-
making process.

Finally, note that by virtue of the ortho-
normality of

N-1
{®[t - k(T/N)]}
‘k =0
the transmitted energy of
N-1 T N~1
= o - = i
m(t) z m (t k N) is =

k=0 k=0

Signal Optimization

The signal optimization is done from the
control theory point of view where the receiver is
regarded as a dynamical system which can be par-
tially controlled by the transmitted signal se-
quence

N -1
{mk}k -0
The problem is to choose the N numbers
{ N-1
mk}k -0

in some optimum manner when the transmitter has
complete knowledge through noiseless feedback of
how the receiver is behaving.

Recall from the Introduction that the re-

ceiver first does a linear operation on the re-
ceived signal sequence

{ N -1
et
Ky =0

described by the difference equation

b1 = ®kxk + Gkrk ; k =0,1,2,...,N - 1
(13)
where
XO =0 3y
rk = mk + nk .

A decision is based on Xy where the jth message
is chosen only if x, lies in the jth subinterval
on [- 1/2, 1/2]. The only way the transmitter can
control the value of Xy is through the signal se-

quence

(¥ -1
lwkl :

'k =0

What the transmitter would ideally like to do is
to choose the sequence that forces XN into the
correct subinterval (corresponding to the message
the transmitter wants to send) with minimum proba-
bility of error. Instead of minimum probability
of error, which is difficult to work with, how-
ever, a minimum mean square distance criterion is
used. Choosing 6 to be the center point of the
correct subinterval, the criterion is to choose
the signal sequence that minimizes E(x, - 6)2.
Here the expectation is taken over all the noise
random variables

Since the transmitter power is limited, it is
necessary to impose some sort of power constraint
on the signal sequence. A time and statistical
average power constraint is imposed so that

N-1
E Z m (14)
k=0

e

P ,8) =

is the constraint equation, Here again expecta-
fion is taken over the random variables

Letting )\ be a Lagrange multiplier, the total cri-
terion is

N~1
2
ZE Z m .
T k=0 k

2 A

J = E(xN -8 + (15)

Thus, signal optimization consists of finding the
sequence
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that minimizes Eq. (15) where ) is found through
Eq. (14). This signal sequence will be referred
to as the optimum signal and labeled

N -1
fnp}
K- o

The solution to this discrete~time stochastic
control problem where the dynamical system is
linear [Eq. (13)] and the criterion is quadratic
[Eq. (15)] is well known in the control theory
literature.® This solution, however, requires
that

N-1

{“k}

k =0

be uncorrelated random variables, which is the
same as assuming the additive noise is white in
the continuous-time channel. Making this white
noise assumption, the optimum signals are now de-
rived using dynamic programming.lo

Define
N

. 2 N 2
f (x,) = Min E {(x -8)"+= L m,
Nok Tk N-l p GN-1° Tymke1 71

{m_}_ Ln»}.
J i=k " 3 j=k (16)
for
j=0,1,2,...,N-1

and

£ (x) = (x, - 9 a7

0N T N )

Note that fN-k(xk) is the minimum expected cost
from the kth iteration to the NP iteration
assuming x; is the state of the receiver at the
kth iteration. A systematic solution procedure
may be obtained by making use of the fundamental
principle of dynamic programming: The Principle
of Optimality. This states:®

An optimal policy has the property that
whatever the initial state and the
initial decision are, the remaining de-
cisions must constitute an optimal
policy with regard to the state re-
sulting from the initial decision,

Here initial decision refers to earlier choices
of mg, my, ..., m_; when considering the choice
of my, mp4y, ..., my_q.

The Principle of Optimality, which describes
the basic properties of optimal solutions, is
based upon the fundamental approach of invariant
imbedding. This implies that to solve a specific
optimization problem, the original problem is im-
bedded within a family of similar problems.

Thus, the multistage optimization problem is re-
duced to a sequence of single optimization prob-
lems. To be able to apply this principle to the
specific problem stated requires the assumption
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that the state process

N
{xk}
k =0
be a weak-sense Markov process.*
lent to requiring

This is equiva-

to be uncorrelated.

Invoking the Principle of Optimality, the
following recursive relation is found:

A2
£ = Mi 2 — 18
Noi(y) = Min B fgom 4 By p )] a8)
m n
k Mk
for
k=0,1,2,...,N~1 .

Starting at the end where fO(xN) = (xN - 9)2 and
working backward, some algebra will show that

2
9
I a Ciegn? = POFD X - 3
moo,
j=k+1 I
N
+ T PG o7 (19)
J=k+2 J

where 02 = Eni. Using this in Eq. (18) gives

s A2 8
fN~k(xk) = xln E T M + P(k + 1) Kkl = TN
k k T ¢,
J=k+1
N
+ T RS0 . (20)
jekt2 J

By Eq. (13) Xp41 can be written in terms of x; and
n . After taking the expectation with respect to

ng, fy-x is

A2
= i _ ] -
fN—k(xk) xln T M + P(k+1) k Bk o1 +kak
k nme,
i=
N
+ T R o . (21)
k1 J

*A process is a weak-sense Markov process if the
expected value of the processes at some time
given the values at some previous times depends
only on the last given value,




Now differentiating the term on the right with

respect to mk gives
o 5
mk = B(k) Xk - F——l— s (22)
me
i=k

where

P(k + 1)0,6,
B(k) = - —————— (23)
T + P(k + l)Gk
as the optimum k'R term of the optimum signal se-
quence. Putting this optimum value into Eq. (21)

results in

£} 2 N 2 2
fN-k(xk) = P(k) e +‘ = P(J)Gj_lo R
m o J=k+1
=k (2
where
P(k) = P(k + 1)[¢i + ®kaB(k)] (25)
P(N) =1

Repeating this single stage optimization pro-
cedure N times gives the optimal signal

N-1
it
k k =0
in a form where the constants

{Baofy T ¢

froofi Ly

are in recursive form. One can get these constants
in closed form by iterating Egs. (23) and (25),
which will yield

—

and

Pk) = - & X B(K) (26)
TG
k
and Gk N-1 ,
— T ¢
*% =k I
B(k) = - J= .oEn
N1, N, 2 X
Z oG, Mol +6
L=kt1 =g Y

Thus, the optimal signal sequence is given in
terms of the receiver parameters

N-1
{o
k=0

and

N-1

o}

and ), where ) is found from the constant equation

k=0

N-1 2
1 2
Pav(e) = T B (k) E xk - N—? . (28)
k=0
mTe.
j=k

The solution given by Eq. (22) has several
interesting properties. First of all, the solu-
tion is nonparametric in the sense that all that
is required is the uncorrelatedness of the addi-
tive noise. Except for a finite variance, 02,
no other noise statistics are required. Even if
the variance of the noise changes at each itera-
tion, this analysis may be carried through., A
second property is that the signal at the kth
iteration is a simple linear function of the
current state, x,, of the receiver. Knowledge of
this exact state is made available to the trans-
mitter by the noiseless feedback link. Finally,
and perhaps most important, is the property that
if the feedback link is noisy such that the trans-
mitter has only noisy observations of the re-
ceiver's current state, this solution is still
optimum with Xy replaced by §klk, ﬁk‘k being the
least mean square error estimate of xy, based on
noisy observations up to the kth iteration., In
other words, for the problem with noisy feedback,

12

estimation and optimization separate,?l,?

So far the optimization is carried out in
terms of the receiver parameters

N -1
{ef
k k=0
and
{ N-~-1
.} .
k k=0

In the next section optimum receiver parameters
are found using ordinary calculus.

Receiver Parameter Optimization

In the last section the optimal signal se-
quence

N-1
o}
k k=0
and
{ N-1
o} .
k k=0
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Using this optimum signal sequence, after some
algebra the minimum distance E(xN -~ 8)2 and the
constraint equation can now be found in terms of
these parameters,

2
A
2 T 2
E(xy-8)" = | §7 , M1, . 6
TG, oG | +5
2=1 k=g 7
N 2
N-1 = N-1
2 2 2
+z T G S s
o\ F1 N, e N-1
- z Gl,—l I ®'+GN—1 + T
sktl V=g Y

2
Thus, the minimum distance E(xy - 8) and the
constraint equation are now written in terms of
the parameters of the receiver and the Lagrange

multiplier )., Note, however, that both these
equations depend on the particular value of 8.
Any sort of optimum parameter set must be inde-
pendent of the message point 6§ so that parameter
optimization will be carried out on the averaged
equations. The averaged equations,

E(xN - 9)2 = }g E(xN - 9)2 (31)
and
Pav = Ig Pav(e) (32)

are found by simply replacing 62 by o% = EB2.

From this point on, all expectations will be taken
with respect to both the channel noise and all
possible message points §. Rather than a con-
straint equation for each g, only one averaged
(over 8§ too) power constraint is imposed. The
distance E(xy - 8)2 is also now averaged over § as
well as the channel noise, This additional
averaging does not change the results in any im-
portant way, but it does reduce the computation
required by a considerable amount.

In searching for the optimum parameters
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N -1
{oi}
kk:O
and
{ N-1
6}
kk:O

that minimize E(xN - 6)2 and meet the average
power constraint, first note that in both Egs.
(29) and (30) these parameters appear in the form

N-1
2
G2 T ol (33)
j=k Y
K =1,2,...,N

It is clear from this that any change in the
parameters

N-1

fo}

L k)k -0

may be absorbed by corresponding changes in

N -1

fo}

Hence, without loss of generality, choose

k=0
s k =0,1,2,,..,N -1 . (34)

This choice reduces the main equations to simpler
forms.

2 2
A A
2 / T g N1 T 2 2 2 2
By = e | %ot B T | Cken® PO
2+ TG &z e G5
k=0 j=k ¥
and
-1 N-1/N-1
1 2 2
P =%z LR P ¢ &
av T k=0 k N-1 9 ke1\ 5=k 2 N-1 9 k-1
= +Z G =tA= +% G
k=0 j=k (36)

Regarding )\ as just another parameter, the problem
of finding optimum parameters reduces to a straight-
forward calculus problem where the conditions for
the optimum parameters are

2
BE(xN - 9) ~ 3 B(PaVT) 37
X =TT,
a(T) 8(,—1,)
and
7 2 — - A
»EE(xN - 9) = T VG(PaVT) (38)

where Vg is the N-dimensional gradient with respect
to the parameters { N -1
‘)
k k =

0




Solving these N + 1 equations the optimum
parameters are found to be

2 2
% = E—E_EE (39)
1 -9
k
Gk = bp , k =0,1,...,N-1 (40)
where 5
P TNo
av 0
b = 5
PavT + No
i (41)
9 2
o = No
P T 4 ch
av

The overall scheme using the optimum signals
and the parameters given above will now be re-
ferred to as the optimum scheme. This choice of
parameters gives the optimum signal sequence

2
o -0
m o= - —_;—E__— (xk -8 , k=0,...,N-1
e (42)
and the minimum distance
2 2 2N
E(xy - 8)" = 04p . (43)

This optimum scheme is summarized in Fig. 5.

Nk
L4
N L o . e
State Equation: xk+1 = xk + bpkrk, k =0,1, ,N-1
xO =0
Signal Sequence: mg = - Sl;jigil Gy - )

k=0,1,...,N-1

Fig. 5

One important property of this optimal scheme
is the fact that the total power, PyyT, is uni-
formly distributed over the N iterations. From
Eq. (13) with the optimum parameters given in
Eqs. (40), (41), and (42), it follows that for
the kth state

2 2
2 2 4k b 2k 4k
E(xk -8)" = ogp  + —5———8—-5— (P =-p
1 - pD
e (49)
Noting that (bzcz)/pz(l - pz) = 05, this becomes
2 2 2k
E(Xk - e) = O’Op . (45)

Thus, the kth iteration of the signal sequence
has averaged power
2.2
9 - p7) oi P T
Em_ = = . (46)

k b2 N

Pe for the White Gaussian Noise Channel

Although an optimal scheme has been developed
for the additive white noise channel with noise-
less feedback, little has been said about how well
it performs. In particular, what sort of infor-
mation rate can it have, and how does the proba-
bility of error behave? In this section these
questions will be answered for the white Gaussian
noise channel, Also a comparison with the best
known schemes without feedback will be made,.

For the white Gaussian noise channel the
noise components

are independent zero mean Gaussian random variables
with variance

Z

2 o
Enk =0 =5 47)

where No/2 is the double-sided spectral density.
Because of the linearity of the state equation and
of the optimum signal sequence, the states

are also Gaussian random variables., Since the de-
cision as to what message is sent is based on xy
and the statistics of xy are known, the probability
of error, P,, is easy to compute.

Consider the state XN for the optimal scheme
shown in Fig. 5.

2 N-1
N = X¥yor - -Gy - 8) 4+ bp

¥
1]

N-1
(48)
1

2 2 N-
:pr_1+(l-p)e+bp nN_l

Using the state equation for each state succes-
sively gives
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N-1
N 2(N-1 -3
x,. = (1 - pz )6 + bp ( ) o In . . (49)
N . J
j=0
The mean value of xN given 6 is clearly
2N
E(xN 8) = (1 - p )b (50)
with conditional variance
22
b o 2N 2N
Var (x |A) = ————— 7 (1 - p°) . (51)
N 2 2
P - pT)
Noting that
22
__2_2._0__2_. = 02 s (52)
pm( - p™)
this conditional variance is rewritten
N
var (x[6) = o(z)pz a-»N . 6

Note that from Eq. (50) it is clear that x
is a biased estimator of 6. This bias resulted
from the fact that an average power constraint was
imposed when trying to minimize E(xN - 9)2. For
large N and T, however, p2N << 1 so that a good
approximation for the conditional mean and
variance 1is
=0

E(lee) (54)

and

2 2N

Var (xN|6) = oop .

(55)
The conditional mean and variance given in Eqgs.
(54) and (55) will be used instead of the actual
mean and variance of Egs. (50) and (51). This .
will result in a slight upper bound of the true
probability of error, but the difference is negli-
gible for large values of T and N.

Recall that the receiver bases its decision
as to which one of M messages is sent on xy in the
following manner, The jth message is chosen only
if xy lies in the jth subinterval of [- 1/2, 1/2].
Since there are M equal length subintervals, each
one has length 1/M. If xy lies in the subinterval
containing ©, then a correct decision is made.
Noting that XN is a Gaussian random variable with
mean § and variance cgpzN, the probability density
of xy is presented in Fig. 6. The probability of

)
8
Fig. 6. The Error Probability is the Shaded Area
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error, P,, is the probability that x, is outside

the interval containing © (shaded area). Thus,
1
P = 2 erfc M
e vVar (x,_|8)
N
3 (56)
1
= 2erfe (5o -
dM OyP

This equation shows that Pe can be driven to
zero by increasing T (and N). Since increasing T
allows more total expected power, P, T, per
message this result is expected. Suppose now,
however, that M is increasing while T (and N) are
fixed; then in this case P_ approaches one. This
is also expected since the total energy per
message is fixed while the number of possible
messages increases, If both T (and N) and M are
increasing, what is the trade-off point where
these two opposite effects cancel? In particular,
is it possible for M to increase with T as

(57)

for R a positive constant and still have P, go to
zero with increasing T? Shannon pointed out that
it is possible to have P, go to zero as long as R
is less than a critical constant C which he called
channel capacity., In the following discussion it
will be shown that the optimal scheme can achieve
this critical rate and that it has a probability

of error that decreases much more quickly with in-
creasing T than the best known nonfeedback communi-
cation schemes,

Defining as the message rate

in M
T

Nats per second (58)

and recalling Egqs. (56), (57), and the fact that
G% = 1/12, the probability of error is rewritten,

U3 e[C(N,T)—R]T}

Pe = 2 erfc (59)
where
N 2PavT
C(N,T) = oF In {1 + - . (60)
o
As yet N and T have not been specified. 1In

the continuous-time channel these schemes require
N orthogonal carrier signals of duration not more
than T seconds. Hence, for a fixed time T, the
value of N is determined by the number of ortho-
gonal carriers allowed, Two cases will now be
investigated.

1. The Wideband Scheme, Typically in space
communication, the channel places no restrictions
on the carrier signal bandwidth. Under this con-
dition of no bandwidth restriction, the additive
white Gaussian noise channel has the channel

capacity givenpbyla
c, = ﬁil Nats per second . (61)
o




without feedback, the best known code for
this channel is a "regular-simplex" set of code
words (that is, a set of M equal-energy signals
with mutual cross-correlation of -1/(M - 1). For
large M, an orthogonal signal set (for which the
cross~correlations are zero rather than -1/(M - 1)
performs almost as well. The ideal receiver for
such signals is a bank of M correlation detectors,
whose outputs are scanned to determine the corre-
lator yielding the largest output. The error
probability for an orthogonal (or simplex) signal
set has been evaluated numerically for values of
M from 2 to 10%, For larger values of M, the
following asymptotic expression can be used. If
T is the duration of each of the M signals,
assumed equally likely a priori, then*

constant
e,orth ~ ___—E—__ - TE(R) (62)
T
where

C(X) Coo

ol R 5 0 =R S —
E(R) = (63)

2 Co
- —— = =

vc, - /B, T SR =C,

1 =8 =2 .

This equation shows that the error probability
for orthogonal codes decreases essentially expo-
nentially with T. As a result, for large T, the
choice of a suitable pair of values R and R to
achieve a given P, is essentially determined by
the quantity E(R).

Consider now the optimal scheme with the
error probability given by Egqs. (59) and (60).
When the channel places no restrictions on the
carrier bandwidth, the number of possible ortho-
gonal carrier signals of duration less than T
seconds is unlimited, Hence, for a fixed T, N

can be made arbitrarily large so that Eq. (60)
becomes
Pav
lim C(N,T) = C_ = — (64)
® N
N—o o
resulting in the error probability
(C_-R)T
P = 2 erfc /3 e . (65)
From the well known bounds on erfc (x)15

1 e-1/2x2 1 _ 114 erfc (x) < 1 e—1/2x2 1
&0 3 Vi :
X X 2 X
(66)
it is clear that Pg decreases essentially in a

double exponential manner with increasing T.
Hence, although the message rate is bounded by

C, 1n both cases, the rate at which the error
probability decreases with increasing T is dra-
matically more rapid with the optimal feedback
scheme than the best nonfeedback scheme. As a
simple comparison between the feedback and non-
feedback cases, consider the value of T required
to achieve

-7

=P =
Pe e,orth 10 (67)
for
c=1 bit/sec
R = ,8C .
The nonfeedback orthogonal code scheme gives
Torth = 2030 seconds (68)
while the optimal feedback scheme requires
be = 8.1 seconds . (69)

Although the optimal scheme has been evalu-
ated here for the white Gaussian noise channel,
it does not depend on the statistics of the addi-
tive white noise. 1If the additive noises

N -1

{nk}k — 0

are independent random variables but otherwise
unspecified, then for this wideband channel the P,
given by Eq., (65) is still correct., This can
easily be shown by applying the central limit
theorem. 1In this case, however, Cu = P,,/N, is
only a lower bound for the channel capacity of

the additive white noise channel of spectral den-
sity No/2 and transmitted power Pav' The actual
capacity of such channels may be much larger than
this, but the capacity is usually too complicated
to evaluate analytically. At any rate, regardless
of the statistics of the additive white noise, the
optimal scheme should give considerable improve-—
ment over the best nonfeedback scheme as is demon-
strated in the Gaussian case.

2. The Band-Limited Scheme. Suppose now
the channel is band-limited to bandwidth W; that
is, all carrier signals are restricted in band-
width to [- W, W], With this additional trans-
mitter constraint imposed, the channel capacity is
no longer P,,/N, as in Eq. (61), but is now given
by

(70)

nats per second. For small values of Pav/NoW this
capacity approaches that of Eq. (61) as it should,
for when W — «© both channels are identical,

Shannon derived this capacity formula, C,,
a random coding argument, and until the work of
Schalkwijk2 last year, no deterministic way was
known for constructing a code achieving the

by
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critical rate for a band-limited white Gaussian

noise channel with or without feedback. The opti-
mum scheme for this band-limited channel is found
to be essentially the same as Schalkwijk's scheme.

Now suppose the transmitter is required to
use carrier signals that are restricted in band-
width to [- W, W], where W is in cycles per second.
In this case the number, N, of orthogonal carrier
signals of duration less than T seconds is limited.
The highest number of orthogonal carrier signals
is approximately equal to 2WT.'® Thus, the band-
width restriction of the channel imposes the re-
striction between N and T to be

N = 2WT . (71)
From Eq, (60) with this restriction on N,
P
av
caN,T | =win L+ =c (72)
N=2WT )
and the probability of error becomes
(C-R)T
P, = 2 erfc /3 e (73)

This equation for P_ is essentially the same as
the one derived by Schalkwijk.* Schalkwijk gives
curves of this error probability and compares it
with Slepian's work'’ which gives theoretical
lower bounds on the error probabilities for this
channel without feedback. In this case, too,

the optimum scheme gives a considerable improve-
ment over the theoretically optimum nonfeedback
schemes, The best nonfeedback schemes have error
probabilities that decrease essentially exponen-
tially with T much like the wideband orthogonal
code scheme, The optimal scheme, however, ex-
hibits the same double exponential behavior here
as in the wideband channel,
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Introduction:

Modern systems theory can be characterized by
the use of state variable concepts and optimization
techniques such as Pontryagin's maximum principle
(the minimum principle). This paper is intended to
provide a feeling for why modern systems theory is a
viable approach to many signal design problems of
communication and radar systems. The basic ideas
and available results are summarized; the details are
left to the cited references. The discussion is
restricted to the use of modern systems theory for a
particular class of signal design problems, no attempt

is made to survey the whole signal design field. 2!
Problem Definition:

The general signal design concept can be applied
to a wide range of physical problems. However, the
present discussion is concentrated on communication
and radar systems. The term "channel” is applied
to both radar and communication systems as a radar
reflector is considered to be a channel. The term
"signal" is also used in a general sense. In a particular
application, the signal may be an amplitude modulation,
a frequency modulation, an observation program, or
simply a time function.

A signal is to be transmitted over some finite
time interval O =t =T . The signal must satisfy
possible constraints on peak amplitude, total energy,
and "bandwidth". The received output of the channel
is put through a data processor to obtain the desired
output at time T (or T plus system delays). There
are two cases of particular interest:

1. Decision Making: The transmitted signal is
one of M possible signals. The data processor's
output is a decision as to which signal was transmitted.
The performance of the system is measured by the
probability of making an error.

2. State Estimation: The transmitted signal is
used to "observe" the channel: The data processor’s
output is an estimate of the state of the channel at time

T . The performance of the system is measured by

* Operated with support from the U. S. Air Force.

the covariance matrix of the errors in the estimated
state.

The decision making case arises both in communication
systems and in the detection aspects of radar systems.
The state estimation case is usually associated with
radar systems wherein the channel's state corresponds
to the radar target's position, velocity, size, spin
rate, etc.

It is desired to find the signal (or set of M
signals) that optimizes the performance subject to
the imposed signal constraints. This design problem
requires ah assumption on the relationship between
the signal (signal set) and the data processor. One
possible approach assumes a fixed data processor.
The approach discussed here assumes the data
processor is always "matched” to the signal (signal
set) in the sense that the data processor is always
the optimum (physically realizable) system corre-
sponding to the signal.

The signal design problem can be summarized
as follows:

Given a channel structure and
the desired constraints on signal
amplitude, energy, and bandwidth.
Find the signal or set of M signals
that optimizes the performance
measure assuming the data processor
is always optimally "matched " to
the signal (signal set).

A modern systems theory approach to this
signal design problem can be partitioned into three
steps.

1. The channel is modeled as a dynamical
system represented by state variable differential
equations (possibly with stochastic inputs). The
constraints are also modeled by state variable
equations.

2. The data processor is modeled as the
optimum dynamical system corresponding to the
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channel model and the signal (signal set). The
performance of this dati processor is determined as a
function of the signal (signal set).

3. Optimal control theory, in particular
Pontryagin's maximum principle, is used to find the

optimum signal (signal set).

More detailed discussions will now be provided on
these three steps.

Channel and Constraint Modeling:

References 1 and 2 contain some general discus-
sions on the representation of channels and signal
constraints by state variable models. This is often
a straightforward procedure as the channel and
constraints can often be modeled using lumped para-
meter linear systems. These linear systems are then
just represented by state variable equations. Good
discussions on the state space modeling of linear
systems can be found, for example, in Refs. 3 and 4.

Linear systems can enter a channel model in
various ways. Correlated Gaussian noise can be
assumed to be generated by passing white noise through
a linear system. A bandwidth limited channel can be
modeled as linear system with a bandpass frequency
response. Stochastic (incoherent) channels such as
multipath communication links and extended radar
targets like clutter and planets can be modeled by 2
tapped delay line with correlated noise multiplying
tap outputs and a final summing bus. The delays can
be approximated by lumped parameter linear systems
and the correlated noise obtained from white noise
and linear systems.

Constraints on the allowable peak amplitude and
total energy of the signal usually fit naturally into the
overall analysis. There are many possible definitions
of bandwidth but most of the interesting bandwidth
constraints can be incorporated into a state variable
framework. Two such possibilities are based on the
energy contained in the signal’s time derivative and
on the energy transfer of a low pass linear system.

Of course, not all channels are easily modeled
using linear systems and special techniques may be
required. For example, channel modeling for a
moving radar point reflector requires linearization of
nonlinear equations. The development of “equivalent"
linear models for an accelerating point reflector is

discussed in Ref. 5'for both amplitude and frequency
modulations.

Data Processor Performance:

For state estimation, the data processor perform-
ance is measured by the covariance matrix of the
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errors in the estimate of the state. The optimum
dynamical system for data processing and its associ-
ated performance are available in the Kalman-Bucy
formulation of the Weiner-Hopf filtering problem for
Gaussian processes, see Refs. 6 and 7.

For decision making the data processor perform-
ance is measured by the probability of error. The
optimum dynamical system for data processing
(likelihood function generation) is discussed in Ref. 8
for Gaussian processes. Performance measures for
the optimum processor are discussed in Ref. 9 in terms
of two "distance” measures; the divergence and the
Bhattacharyya distance. These measures are not
always equivalent to the probability of error but they
can provide bounds and are felt to be adequate for
signal design.

For both state estimation and decision making,
the performance is evaluated in terms of the solution
of a matrix Riccati equation which is a first order,
non-linear, matrix system of ordinary differential
equations with time as the independent variable. This
matrix Riccati equation is the one associated with the
optimum time varying linear filter. The signal (signal
set) appears in this Riccati equation as a time varying
"coefficient”.

Signal Optimization:

The Riccati equation which governs performance
is a matrix system of first order differential equations.
This Riccati equation can be considered to be a state
space representation of some hypothetical dynamical
system. The signal (signal set) can be considered to be
the input to this hypothetical dynamical system and the
performance measure can be considered to be its out-
put. Viewed in this light, the signal design problem is
the same as the "classical” optimum control problem
of designing the input which gives the best output of a
dynamical system.

A major tool of optimum control theory is
Pontryagin's maximum principle (see for example,
Ref. 3). Pontryagin's maximum principle yields
necessary conditions which the optimum signal (signal
set) must satisfy. These necessary conditions provide
general information on the overall structure of the
optimum. For numerical results, a two point boundary
value problem must be solved and computer techniques
are often required. Some of the results obtained using
the maximum principle will now be summarized.

Optimum signals have been calculated for the
state estimation case of a radar observing an acceler-
ating point reflector in the presence of additive white
noise. In Ref. 10, it is shown that the optimum frequency
modulation is frequency switching between the allowable
bandwidth limits. In Ref. 11, it is shown that the



optimum amplitude modulation under peak power and
total energy constraints is a pulse train of at most
three pulses; all pulses having the maximum allowable
peak power. In both references, the performances of
the optimum signals are compared with more
conventional signals.

References 10 and 11 contain results for specific
problems. Reference 12 contains a more general
resnlt which is called the on-off principle. A loose
statement of the on-off principle is now given. Assume
the channel is as shown in Figure 1. The signal,

u{t) O =t =T, is considered to be an "instantaneous

power". The signal constraints are:
T
S‘ ut)dt =E (total energy)
O=ult)=U (peak power)

There are two problems of interest:

1. State Estimation: The switch is closed and
the state of the dynamical system is to be estimated,

2. Decision Making: The position of the switch
is to be estimated.

The necessary conditions which the optimum signal
must satisfy prove that for either problem the
optimum uft) atany t, O=<t =T, iseither O or
U ; that is the optimum power level switches back and
forth between full power and zero with no intermediate
values. Thus the on-off principle states that the
general structure of the optimum is independent of the
details of the dynamical system and the correlated
noise (the pulse train of Ref. 11 is a special case of
the on-off principle). Of course, the actual "switch
times" depend on the details of the dynamical system
and the correlated noise and switch time calculation
requires the solution of a two point boundary value
problem.

Discussion:

The use of modern system concepts for signal
design is really aphilosophy of approach rather than a
single technique. The crux of this approacn 1is the use
of state variable models so that the system performance
can be considered to be the output of a dynamical
system (the Riccati equation) whose input is the signal
(signal set). Given such a model, the signal design
proceeds directly using the techniques of optimal
control theory.

In one sense this modern system approach is just
a .re formulation of a problem in new terms. However,
this reformulation is extremely valuable as it makes
available the powerful engineering and mathematical

tools of modern systems theory. These tools enable
the actual solution of difficult signal design problems
involving finite time intervals, time varying systems
and realistic signal constraints.

The many possibilities for further work include:

1. Development of other general structural
properties like the on-off principle.

2. Development of computation algorithms
tailored to solving the necessary two point boundary
value problems.

3. Calculation of explicit solutions for specific
problems.

White
noise

Correlated
noise

uft) i i
Switch

Figure 1
Channel Model for On-Off Principle
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